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INTRODUCTION

Craniosynostosis, defined as premature fusion of one or more of the cranial sutures, 

most commonly occurs sporadically as an isolated defect. In contrast, syndromic 

craniosynostosis typically involves multiple sutures as part of a larger constellation 

of associated anomalies (1). Syndromic craniosynostosis is frequently associated with 

different genetic mutations. Common features of these conditions are, hypertelorism, 

midface hypoplasia, ptosis of the eyes, and hand or foot anomalies. Increased intracranial 

pressure (ICP) is a well-known problem in craniosynostosis patients and is the main 

reason to operate. Increased intracranial pressure may damage the optic nerve and lead 

to visual loss. Understanding the complex pathophysiology of elevated ICP in syndromic 

craniosynostosis patients will improve their treatment, and possibly their physical and 

mental outcome. Additional difficulties are developmental and behavioural problems,.

This thesis on syndromic craniosynostosis describes the genetic background, the causes 

and effects of intracranial hypertension, and the developmental and psychological 

consequences in these patients.

CRANIOSYNOSTOSIS

The skull is composed of bony plates separated by sutures which permit future growth of 

the brain. The main sutures which contribute to calvarial development are the metopic, 

coronal, sagittal, and lambdoid sutures (2). During the first two years after birth, the brain 

increases in size to 75 percent of its adult volume. The remaining 25 percent of growth 

occurs during the next 18 years. Fontanelle and suture closure occurs in a specific pattern. 

At two months of age, the posterior fontanelle closes, followed by the metopic suture 

which typically closes within the first year. Next is the anterior fontanelle, which closes at 

approximately two years of age. All remaining patent sutures close in adulthood following 

completion of craniofacial growth. Initially growth is mainly accomplished by the calvarian 

sutures, but from the age of six the skull grows by apposition of the bone at the outer site 

of the skull and resorption of the bone on the inner site of the skull. (3)

Premature fusion of the cranial sutures impedes normal growth of the skull, resulting in 

characteristic anatomic malformations of the skull. Craniosynostosis affects 1 in 2500 

births and can be either isolated (nonsyndromic) or occur as part of a syndrome. (4)

Isolated craniosynostosis patients have no other abnormalities besides the premature 

closure of one cranial suture. The characteristic skull shape betrays which of the sutures 

is prematurely closed. Scaphocephaly is caused by sagittal suture craniosynostosis, 

trigonocephaly by metopic suture craniosynostosis, frontal plagiocephaly by unilateral 

coronal synostosis and posterior plagiocephaly by unilateral lambdoid suture synostosis.

1
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Figure 1: Open calvarian sutures, the normal anatomy.

Figure 2: Isolated craniosynostosis, note the characteristic skull shapes

Craniosynostosis is in 24% of all cases a part of a syndrome and caused by mutations 

in various genes.(5) Children with syndromic craniosynostosis usually have other birth 

defects present next to the craniosynostosis. The most common syndromes are Apert, 

Crouzon-Pfeiffer, Muenke and Saethre-Chotzen syndrome. Complex craniosynostosis 

is part of the syndromic craniosynostosis group: it includes patients where at least two 

sutures have been fused without known genetic mutation.

In 1993 the first genetic mutation causing craniosynostosis is described in a three 

generation family within the MSX2 gene (6, 7). Nowadays, there are 57 human genes for 

which there is reasonable evidence to cause craniosynostosis (8).

Apert syndrome (acrocephalosyndactyly type I) is rare and occurs around one in 60.000 - 

160.000 livebirths.(4, 9-12)Although Apert syndrome is an autosomal dominant disorder 

most cases are sporadic. Mutations in the gene encoding fibroblast growth-factor receptor 

2 (FGFR2), located on chromosome 10, account for almost all known cases. It is almost 

always caused by pathogenic mutations of Ser252Trp or Pro253Argin the FGFR2-gene 
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(13-15). It often originates from the father in whom spermatogonia are mutated during 

spermatogenesis, therefore it correlates with increasing paternal age (16, 17). Apert 

syndrome is first described by the French paediatrician Dr. Eugene Charles Apert in 1906. 

It manifests clinically by a bicoronal synostosis and maxillary hypoplasia, that causes a flat, 

recessed forehead and a flat midface. In addition, affected patients typically present with 

exorbitism and hypertelorism. Furthermore patients suffer from a class III malocclusion 

and a V-shaped maxillary dental arch.(18-20) Syndactyly is also a characteristic finding 

of the Apert syndrome. The Apert hand can be classified in three types, according to 

increased severity. All of them have a complex syndactyly of digits two through four and 

a short broad thumb. In the spade hand (Type I) the thumb is free and there is a simple 

syndactyly of the fourth webspace, the mitten hand (Type II) additionally has a simple 

syndactyly of the thumb while the rosebud hand (Type III) consists of a complex syndactyly 

of all the fingers. At the feet there is also a symmetrical syndactyly (20, 21). The intelligence 

varies, scores were found between 62 and 94 in previous literature.(22-24) A recent 

study from our unit finds a significantly lower result , a mean of 77, for Apert patients 

compared to the syndromic craniosynostosis subgroups. They argue that children who 

have Apert syndrome have the highest risk for developing intellectual disability (25).

Crouzon-Pfeiffer syndrome occurs in 1 in 25.000 births and is an autosomal dominant 

syndrome, predominantly caused by mutations in FGFR2, located on chromosome 10 with 

variable expression. But sometimes the FGFR1 or the FGFR3 mutation, A391E, has also 

been reported in individuals with Crouzon syndrome and acanthosis nigricans (26, 27) (28). 

The Crouzon syndrome was first described by Octave Crouzon in 1912 and Rudolf Arthur 

Pfeiffer described in 1964 the Pfeiffer syndrome (29). Historically both were distinguished 

by the presence of broad and short thumbs and halluces. Currently the distinction between 

these two syndromes can be seen as irrelevant because of completely identical genetic 

mutations. Phenotypically they suffer usually from bicoronal synostosis, but other sutures 

can be affected. In some of the cases the craniosynostosis develops postnatally (30). 

Exorbitism, midface hypoplasia and malocclusion type III belong to the characteristics of 

Crouzon-Pfeiffer syndrome. Most Crouzon-Pfeiffer patients have a normal or even high 

intelligence, but others may suffer from mental retardation (IQ range: 54-133) (25).

Muenke syndrome is an autosomal dominant disorder with incomplete penetrance, 

caused by the Pro250Arg mutation of the FGFR3 gene on chromosome 4. The mutation 

is described by Muenke in 1997, but the phenotype is first described in 1994 by Glass (31, 

32) The estimated birth prevalence is 1 in 30.000 births. (4) Most likely this occurrence 

is underestimated because not all patients are clinically recognized (33-38). Not all cases 

come to clinical attention because the phenotype is variable and sometimes very mild. 

But, most often the phenotype consists of unilateral or bilateral coronal synostosis and 

associated anomalies. Sensorineural hearing loss, hypertelorism, high arched palate, 

strabismus, carpal bone fusions and brachydactyly are described in this patient group 

(35, 39). Muenke patients have a mean IQ of 95.2 (range 73-124), which is not significantly 

1
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lower compared to normative. Nevertheless a proportion of 0.39 have an intellectual 

disability in this patient group. On the other hand parents reported higher levels of 

behavioural problems, emotional problems, social problem and inattention compared to 

parents of children who have other subtypes (25). 

Saethre-Chotzen syndrome has a birth prevalence of 1 in 25.000 births. (4) It is an 

autosomal dominant syndrome, caused by mutations of deletions in the TWIST1 gene. 

Phenotypically it is characterized by coronal synostosis, ptosis of the upper eyelid, external 

ear anomalies. Limb abnormalities, such as brachydactyly, syndactyly, clinodactyly or 

broad halluces are also frequently described. Intelligence in Saethre-Chotzen patients 

can vary enormously. Earlier research described a range from 52-141, with a mean of 

100 (25). Yet, it is suggested that patients with TWIST deletions have a higher frequency 

of mental retardation (40)

Complex craniosynostosis includes patients who have multisuture synostosis but without 

known genetic mutation. This is a very divergent group and a source for genetic research. 

Discovering more genetic mutations, such as MSX2, IL11RA ERF, TCF12 and ZIC1 makes 

this a shrinking population (5, 7, 41-43).
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A. Apert B. Crouzon-Pfeiffer

C. Muenke D. Saethre-Chotzen

Figure 3: Showing Apert, Crouzon – Pfeiffer, Muenke and a Saethre-Chotzen patient. Note the different 
phenotypes.

1
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CRANIOSYNOSTOSIS AND INTRACRANIAL PRESSURE

Elevated intracranial pressure (ICP) is a well-known, but poorly understood problem in 

craniosynostosis patients. It is most common in syndromic craniosynostosis in which the 

prevalence varies. Pre-operatively the incidence varies between 40 to nearly 100% (44-50). In 

these pre-operative studies the numbers are relatively small, many articles come from the same 

centers and a big variance is reported in all syndromes. To prevent intracranial hypertension, 

a cranial vault expansion is done in the first year of life by most craniofacial centers. 

Nevertheless, early expansion does not completely prevent the development of elevated 

ICP. Even after surgery patients can develop elevated ICP. In contrast to preoperative results, 

there is little literature about post-operative elevated intracranial pressure. Results vary from 

8 up to 43% of syndromic craniosynostosis patients who develop elevated ICP (44, 51, 52).

Potential causes for elevated ICP are cranio-cerebral disproportion (53), obstructive sleep 

apnea (OSA), tonsillar herniation of the cerebellum (54) and venous hypertension.

Literature shows that patients with syndromic craniosynostosis have a normal brain 

volume and intracranial volume, indicating that a cranio-cerebral imbalance is seldom 

the initial cause for elevated ICP and only so in patients with pansynostosis (55). During 

follow-up, however, a falling-off in occipitofrontal head circumference growth curve is 

associated with intracranial hypertension (52).

OSA has an important implication for cerebral blood flow and intracranial pressure 

dynamics (46, 55). Nearly 70% of patients with a syndromic craniosynostosis suffers from 

OSA, mainly of mild severity (56), and therefore its contribution to the high prevalence of 

elevated ICP seems limited. But research did describe an association between intracranial 

hypertension and moderate / severe obstructive sleep apnea, by causing vasodilatation 

and thus extra inflow of blood, during the nocturnal episodes of desaturation. (52)

Tonsillar herniation is defined as a herniation of the cerebellar tonsils through the foramen 

magnum. When the herniation is less than 5mm below the foramen magnum it is called a 

tonsillar herniation, when it is more than 5mm below the foramen magnum it is called Chiari 

I malformation (CMI; classic definition)(57-60). Whether tonsillar herniation develops as a 

result of elevated ICP or (also) causes the ICP is to debate. CMI development is a complex 

problem. Rijken studied the relation between the size of the foramen magnum and the 

development of CMI. She states that a reduced foramen magnum size is not related to 

CMI. But she did prove that patients with a syndromic craniosynostosis do have a smaller 

foramen magnum compared to control patients. In the Crouzon-Pfeiffer and Apert group 

the smaller foramen was related to premature closure of the anterior and posterior intra-

occipital synchondroses. Hence, the idea that a smaller posterior fossa would cause CMI 

was proven wrong in this study. It did show that a higher cerebellar volume / posterior fossa 

volume ratio was found to be a predisposing factor for the development of CMI (61, 62).
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Venous hypertension refers to obstruction of the venous outflow of the brain and 

alterations in the dynamics of flow in the superior sagittal sinus (53). Venous hypertension 

is commonly described in syndromic craniosynostosis and has been related to a reduced 

diameter of the jugular foramen. Theories differ, some state that the bony narrowing 

may lead to obstructed outflow. As a result of the obstructed outflow, venous pressure 

and consequently CSF pressure raises. (63-65) Others attenuate this by presenting 

no difference in jugular foramen diameter between craniosynostosis patients with and 

without intracranial hypertension.(66) Another anomaly that is frequently encountered 

in syndromic craniosynostosis is the presence of venous collaterals at the level of the 

posterior fossa. This appears to be a bypass system to allow for additional venous 

outflow.

CRANIOSYNOSTOSIS AND WHITE MATTER INTEGRITY

The cause for the known developmental and psychological problems are still unexplained 

for in these patients. Not only genetics, elevated intracranial pressure but also the brains 

of these patients have been studied using conventional magnetic resonance imaging (MRI). 

Ventriculomegaly, corpus callosum, hippocampus or septum pellucidum anomalies are 

seen on MRI. Moreover, white matter alterations and abnormal gyral structure have been 

reported (67-71). These are all anomalies that could indicate either secondary causes or a 

primary congenital disorder. In 2007, Raybaud et al. (72) published a review with the aim of 

resolving the controversy regarding whether the brain abnormalities seen in patients with 

syndromic craniosynostosis are primary or secondary to the bone deformities. In their 

review they state that experimental neurobiological evidence supports the hypothesis 

that the fibroblast growth factor receptor (FGFR) 1, FGFR2, and FGFR3 gene mutations, 

causal of syndromic craniosynostosis, may also be causal of diffusely abnormal white 

matter development.

Their research shows an interaction of FGFR with L1 cell adhesion molecule (L1CAM). And 

this L1CAM is related to developmental white matter disorders. Consequently cerebral 

abnormalities are the result of white matter alterations. White matter has been reported 

as atrophic or hypoplastic in all syndromes (67, 69-72). Additionally, partial or total agenesis 

of the pellucid septum has been reported (67-72). Cerebellar involvement, ascribed to 

a small fossa posterior associated with tonsillar herniation, has also been documented 

often (67, 68, 70). Raybaud and co-workers concluded that the observed white matter 

abnormalities, assessed on conventional brain MRI, could constitute a primary disorder 

(72). Diffusion Tensor Imaging (DTI) is an MRI sequence that allows to study the micro-

architectural organization of brain tissue in vivo. DTI can provide an objective and 

reproducible assessment of the white matter derived from quantitative measures (73, 

74). Diffusion tensor imaging is a non-invasive technique that provides microstructural 

information related to white matter status. DTI gives us the ability to learn the water 

1
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diffusion profile in white matter. Fractional anisotropy (FA) is a common used parameter 

in DTI and describes the degree of anisotropic diffusion. Fractional anisotropy values 

ranges from 0 to 1, with 0 being completely isotropic (equal in all directions) and 1 being 

completely anisotropic (diffusion along only one axis)(75). Muetzel describes associations 

between white matter microstructure and cognition in a large sample of young children. 

They observe associations in white matter integrity and general intelligence (76). No 

studies were performed by combining intellectual, behavioural and emotional functioning 

with white matter microstructural integrity in syndromic craniosynostosis patients yet.

CRANIOSYNOSTOSIS INITIAL TREATMENT

Early recognition is the first step in good practice. Craniosynostosis is rare and often late 

or even not recognized. In first and second line craniosynostosis has to be distinguished 

from non synostotic plagiocephaly (NSOP). Recognition of craniosynostosis patients is 

hampered by the growing incidence of NSOP since the nineties. This rising incidence is 

caused by the advise to let children sleep at their back to prevent sudden infant death 

syndrome. Syndromic craniosynostosis patients do have additional abnormalities 

as midface hypoplasia, exorbitism and limb abnormalities. Craniosynostosis can be 

distinguished from NSOP by adequate history taking and physical examination and 

often rotation of the skullbase on CT. If patients are suspected to have craniosynostosis, 

a referral to a expertise craniofacial center is indicated.

In our treatment protocol diagnostic imaging will be performed by doing an ultrasound 

when the diagnosis is uncertain and a CT scan with 3D imaging to confirm the diagnosis. 

Operation will be done in all patients in the first year of life, and the main reason to 

operate is to prevent elevated intracranial pressure (77-79). The timing of the operation 

is diagnosis-dependent. Apert and Crouzon-Pfeiffer patients will generally be operated 

at the age of 6 months. For these patients an occipital expansion with springs is primary 

choice, because of the greater increase in intracranial volume compared to fronto-orbital 

advancement. Additional benefit of doing the first vault expansion at the back is that there 

is a lower complication rate when doing a monobloc advancement, Le Fort III or facial 

bipartition in a later stage (80). When doing occipital expansion there must be awareness 

of the possibility of occipital collaterals as the main mechanism of drainage for the cerebral 

venous system. Occipital surgery can have major complications in these cases. A pre-

operative CT angiography (CTA) is necessary in all cases. Additionally, in patients with 

severe exorbitism, a monobloc advancement with distraction should be considered as 

first cranial vault expansion.

Saethre-Chotzen and Muenke patients, where retrusion of the orbital bar is the main 

clinical feature and midface development is near normal, a fronto-orbital advancement will 

be performed in their first year of live. Saethre-Chotzen patients will be treated earlier, 
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between 6-9 months of age, and Muenke patients between 9-12 months of age. The 

reason to operate Muenke patients later is because of the low risk of elevated intracranial 

pressure within the first year of live and better esthetical outcome when operated at a 

later age (81-83)

If there is proof of elevated intracranial pressure, operation will then be rescheduled at 

an earlier date in all patients.

AIM OF THIS THESIS

At first we give an overview of craniosynostosis nowadays. The first part of this thesis 

focuses at the genetic origin of craniosynostosis. Genetic research is done in families in 

whom a syndromic presentation is seen but none of the most common genetic mutations 

is found. In Chapter Two a report of a second mutation in MSX2 is described following 

the first and only reported family in the world with a Boston type craniosynostosis (84) It 

describes mutations in the DNA binding region of the homeobox gene MSX2 whereas loss 

of one allele of BCL11a in Chapter Three provides the link to transcriptional regulation 

and comorbidities to Primary Immune Deficiency patients. It describes two patients 

who add different forms of craniosynostosis to the clinical spectrum of the 2p15p16.1 

microdeletion syndrome. (85)

The second part concentrates at imaging in craniosynostosis patients. Chapter Four 

reports on venous hypertension as a cause of elevated intracranial pressure. (66)

Chapter Five is a prospective DTI study to assess whether architectural alterations 

exist in the white matter of operated patients with syndromic craniosynostosis. Chapter 
Six reports white matter alterations in young unoperated patients compared to healthy 

controls.

Chapter Seven focusses at sleep apnoea problems in syndromic craniosynostosis patients 

and describes the relationship of hindbrain herniation and occurrence of OSA.

1
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ABS TR AC T
We describe a family that segregated an autosomal dominant form of craniosynostosis 

characterized by variable expression and limited extra-cranial features. Linkage analysis 

and whole genome sequencing were performed to identify the underlying genetic 

mutation. A c.443C>T missense mutation in MSX 2, which predicts p.Pro148Leu was 

indentified and segregated with the disease in all affected family members. One other 

family with autosomal dominant craniosynostosis (Boston-type) has been reported to 

have a missense mutation in MSX. These data confirm that missense mutations altering 

the proline at codon 148 of MSX2 cause dominantly inherited craniosynostosis.
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INTRODUCTION

Craniosynostosis may be isolated finding or part of a syndrome and affects 1 in every 

2500 live births (1). It may affect only one suture, or when part of a syndrome, usually 

multiple sutures are involved. This is the case in at least 20% of the patients with 

craniosynostosis (2). Associated problems, such as widely spaced eyes, malar flattening , 

and hand or foot anomalies may indicate a genetic cause (1). Well-known syndromes such 

as Crouzon, Pfeiffer, Apert, Muenke, Saethre-Chotzen or craniofrontonasal dysplasia 

have characteristic features. Confirmation of the diagnosis can be made by DNA analysis 

of FGFR1 [OMIM:136350], FGFR2 [OMIM:176943], FGFR3 [OMIM:134934], TWIST1 
[OMIM:601622] and the, recently identified, TCF12 gene [OMIM:600480] (1, 3).

The first family with a newly recognized form of autosomal dominant craniosynostosis 

was reported by Warman et al.(4). They describe a family with the trait in 3 generations 

with variable expressivity of sutural involvement and cranial abnormalities combined 

with associated problems like headache, poor vision and seizures. Clinical diagnosis 

was precluded based upon the absence of characteristic changes normally present in 

these syndromes (5). Using linkage analysis, a locus on chromosome 5qter was assigned 

by Müller et al. and a causal mutation in the homeodomain of MSX2 [OMIM:12301] in 

this family was reported by Jabs et al. who used the term “Boston type” for this type of 

craniosynostosis (6, 7).

We describe a family that segregated an autosomal dominant form of craniosynostosis 

characterized by variable expression and limited extra-cranial features, not resembling the 

unspecified phenotype described for the Boston type craniosynostosis. Linkage analysis 

and genome sequencing were performed to identify the causative mutation in this family.

MATERIALS AND METHODS

Study Subjects

This research project was reviewed and approved by the Erasmus MC, Institutional 

Review Board/Medical Ethical Committee (MEC 2005-273). The Next Generation 

DNA Sequencing (NGS) experiments were performed under the general Medical Ethical 

Committee approval (MEC 2011-253). This research is in line with the World Medical 

Association Declaration of Helsinki.

Linkage Analysis

CSV files containing SNP call data from HumanCytoSNP-12v2.1(Illumina, San Diego, 

CA) arrays were adapted by GenomeStudio (Illumina) to be compatible for calculating 

LOD scores with Allegro (8). Mendelian inheritance check was performed for all family 

members, with the program PedCheck (9). The SNPs showing Mendelian inconsistencies 
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were excluded from the calculation. Individuals who were encoded by the pedigree 

information file were used for allele frequencies computation. Any SNPs with a call 

rate lower than 95% were excluded from the calculations. Multipoint linkage analysis 

was performed using Allegro with a SNP spacing of 0.2 cM. LOD scores were calculated 

assuming the disease to be an autosomal dominant disorder with 99% penetrance.

Genome Sequencing:

Genome sequencing was performed by Complete Genomics A BGI Company. (Mountain 

View, CA) using a sequencing-by-ligation method described previously, on DNA of five 

family members: three patients (I-2, II-1, III-1) and two unaffected individuals (I-1, II-2) 

(10). Paired-end reads (30-35 bp) were mapped to the NCBI reference genome build 36.3 

and dbSNP build 130. Data were analysed using cga tools version 1.3.0 build 9 (http://

www.completegenomics.com/sequence-data/cgatools/) and Spotfire 3.3.1 (Tibco). 

Mapped sequence of the five samples varied in size between 222 and 312 Gigabytes, 

resulting in an average coverage between 80 and 113-fold per genome. Confident diploid 

calls could be made for 93 to 95% of the reference genome in all samples.

PCR and Sanger sequencing

Specific primers were developed for Sanger sequence analysis of the exon 2 variant at 

position c.443 (NM_002449.4) in MSX2.

Primers used were:

Forward primer in intron 2: 5’-AGAGATGACGGGGGAGATGG-3’

Reverse primer in exon 2: 5’-TGGGGAAAGGGAGACTGAAGC-3’

Amplification reactions were performed in a total volume of 20 µl, containing 1x AmpliTaq360 

PCR buffer , 1.8 mM MgCl
2
, 200 µM of each dNTP, 10 µM forward primer, 10 µM reverse 

primer, 0.5 unit AmpliTaq360 DNA polymerase (Applied Biosystems, lIfe technologies, 

Grand Island, NY), and 30 ng genomic DNA. PCR conditions: 5 min 940C initial denaturation 

followed by 10 cycles of 30 sec 940C; 30 sec 700C -10C/cycle (touch down); 60 sec 720C 

and 35 cycles 30 sec 940C; 30 sec 600C; 60 sec 720C with a final extension for 5 min 720C.

The PCR reactions were purified with ExoSAP-IT (USB, Affymetrix, Cleveland OH). Direct 

sequencing of both strands was performed using Big Dye Terminator chemistry v3.1 

(Applied Biosystems) as recommended by the manufacturer.

Dye terminators were removed using SephadexG50 (GE Healthcare, Pittsburgh, PA) and 

loaded on an ABI 3130XL Genetic Analyzer (Applied Biosystems). For sequence analysis 

the software package Seqscape (Applied Biosystems, version 2.6) was used.

Reference sequences included NM_002449.4; Ensembl Transcript ID

ENST00000239243 andNP_002440.2: Ensembl Protein ID: ENSP00000239243.
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CLINICAL REPORTS

A young patient (III-1, Fig. 1)of a large Bosnian family presented at the Dutch Craniofacial 

Centre with multiple surutre craniosynostosis. The pedigree showed that eight members 

were affected with craniosynostosis (Fig. 1). Twelve family members (I-3 and II-5 not 

included) were seen at the department of plastic and reconstructive surgery and 

participated in the study. No consanguinity was known in this family and the inheritance 

was consistent with an autosomal dominant pattern.

Figure 1: Pedigree of the craniosynostosis family with four generations (0-III). The proband III-1 is indi-
cated with an arrow. I-3 was known to have turricephaly but did not participate in the study. Of I-3, II-3, 
and II-5 no DNA was available. No information is available about the great grandparents (0–1 and 0–2) 
or their phenotype. Filled symbols = affected, empty symbols = unaffected, / = deceased, gray symbols 
= phenotype unknown. Individuals II-1 and III-1 were heterozygous for a deletion in the LEMD3 gene. 
An* indicates individuals which were genotyped. A heterozygous mutation in MSX2 is indicated with an 
M. Normal homozygous MSX2 sequence is indicated with an N.

The proband

Patient III-1 was seen at the age of 5 months. He presented with an abnormal skull shape, 

and a skull circumference of 37.5 cm (< 2th centile) (Figure 2). Physical examination showed 

a turricephaly, narrow forehead, down slanted palpebral fissures and closely spaced eyes. 

The maxilla showed a minimal underdevelopment. A CT scan showed bilateral coronal 

suture synostosis, metopic suture synostosis and wormian bones (Figure 3). There was 

a normal ventricular size and no signs of papilledema at fundoscopy. The fingers were 

short and broad, while the feet were without abnormalities. An X-ray of both hands 

showed no bony abnormalities. At the age of 6 months a frontosupra-orbital advancement 

was performed at our clinic. By 3 years of age the skull circumference was 46 cm (< 2th 

centile), height 104,5 cm ( >84th centile) and 18 kg (84th centile). At the age of five years, 

he appeared to have a normal neurological development. Psychological tests were 

never performed because he performed well at primary school. At the age of 6 years he 

reached a length of 122 cm (>50th centile), a weight of 24.3 kg (>84th centile) and a skull 

circumference of 46.5 cm (< 2th centile).
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Figure 2: Facial and hand phenotypic characteristics of the family members. Left panel top to bottom: 
II-1: Father of proband (age 43 years, never operated) showing a trigonocephaly with closely spaced 
eyes, III-1: Proband (age 5 months, pre-operative) showing turricephaly, narrow forehead, downslanting 
palpebral fissures, closely spaced eyes, and mild midface retrusion. II-4: Mother of Patient III-3 (age 41 
years, never operated) showing a brachycephaly sk. Right panel top to bottom: Patient III-3 (age 18 years, 
post-operatively) showing post-operative retrusion of the forehead. Hands of Patient III-3 showing short 
fingers. X-ray of hands of patient III-3 showing shortening of the distal phalanges.
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Figure 3: Radiological images: anterior, lateral, and posterior views of the skull. I-2: X-ray of patient I-2, 
(age 68, never operated) demonstrating left sided coronal suture synostosis and a bony defect at the 
former site of the anterior fontanel. II-1: X-ray of Patient II-1, (age 43 years, never operated) demon-
strating mild trigonocephaly with closely spaced eyes. II-4: X-ray of patient II-4, (age 41, never operated) 
demonstrating a brachycephaly, due to early closure of the coronal sutures, and a generalized copper 
beaten aspect. II-6: X-ray of Patient II-6, (age 34, never operated) demonstrating a brachycephaly with 
closure of the coronal sutures and elevated sphenoid wings and a distorted orbital shape. It also shows a 
generalized copper beaten aspect. III-1: 3D-CT of the skull of Patient III-1 (age 6 months, pre-operatively), 
demonstrating turricephaly and metopic and bilateral coronal synostoses. There is bone at the junction of 
the sagittal and lambdoid sutures, called the interparietal portion of the squamous supraoccipital bone. 
The generalized copper beaten aspect is present and midface retrusion. III-3: X-ray of Patient III-3 (age 
18 years, post-operatively) demonstrating a copper beaten skull. III-4: X-ray of Patient III-4, (age 13 
years, never operated) demonstrating scaphocephaly.
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Patient III-3, a cousin of the proband, was born in Bosnia with a complex craniosynostosis. 

She was operated in her homeland in the first year of life. From this patient no pre-

operative X-rays were available. A second skull remodelling was performed after she 

arrived in The Netherlands because of an obvious retrusion of the forehead. Her hands 

showed short fingers, mainly caused by shortening of the distal phalanges. Both thumbs 

had a supination position. She performs well at higher general secondary school and there 

are no signs of a delayed development. Pictures are shown in Figures 2 and 3.

Patient III-4, a cousin of the proband, is a boy with a sagittal suture synostosis with a mild 

dolichocephaly, which has never been operated. There was a normal development and 

there were no other characteristic anomalies. Pictures are shown in Figure 3.

Patient number II-1, the father of the proband III-1, showed a craniosynostosis of the 

metopic suture, which has never been operated. He showed slightly closely spaced eyes 

which matched his trigonocephaly. Pictures are shown in Figures 2 and 3. Remarkable 

in this patient were the short fingers of the hands. The shape of the digits was normal. 

An X-ray of the hands showed the short fingers and unexpectedly the presence of 

osteopoikilosis. Short fingers in this patient were caused by shortening of all phalanges, 

and diagnosed by a clinical geneticist and a plastic surgeon. After testing LEMD3, a gene 

known to be involved in osteopoikilosis, a deletion of exon 5-13 was found in this gene 

in this patient. All family members were then tested for this deletion by qPCR (data not 

shown). The LEMD3 mutation in patient II-1 was an apparently de novo mutation, inherited 

by his son, Patient III-1. In the son the osteopoikilosis was not visible due to his young age 

(11, 12). All other family members tested negative for this LEMD3 mutation.

Both patients II-4 and II-6, who are sisters and were never operated, showed a 

brachycephalic skull shape. X-rays of the skull of these patients showed premature closure 

of the coronal sutures with elevated sphenoid wings and thereby a distorted orbital shape. 

X-rays of these patients showed generalized copper beaten aspect, suggestive of elevated 

intracranial pressure. Pictures are shown in Figures 2 and 3. Hands and feet did not show 

any abnormalities.

Patient I-2 is the grandfather of the family. His skull X-ray showed a unilateral coronal 

suture synostosis and a bony defect at the region of the anterior fontanel. The midface 

did not show any specific abnormalities. Pictures are shown in Figure 3.

Patient I-3 is known to have a turricephaly but refused to participate in this study. X-rays 

are not available.

In summary, all patients have a distinct skull phenotype. The main characteristic present in all 

patients is the craniosynostosis. Other characteristics such as closely spaced eyes, midface 

retrusion and hand abnormalities were variable. Clinical information is presented in Table I.
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Based on the clinical information and the pedigree, it was concluded that the disease 

segregates in an autosomal dominant mode of inheritance. Linkage analysis combined 

with genome sequencing was performed to identify the underlying genetic defect.

Table I: Summary of clinical information of the whole family

Individual Age in 
years

Sex Craniosynostosis 
phenotype

Surgery Other

I-2 73 M Unilateral coronal synostosis - Defect anterior fontanel

I-3 M Turricephaly - No participation

II-1 47 M Trigonocephaly - Brachydactyly, hypotelorism

II-4 46 F Brachycephaly -

II-6 39 F Brachycephaly -

III-1 7 M Turricephaly Yes Bitemporal depression, hypotelorism

III-3 22 F Complex craniosynostosis Yes Retrusion forehead

III-4 17 M Scaphocephaly -

Linkage analysis

Multipoint linkage analysis using DNA of seven patients (I-2, II-1, II-4, II-6, III-1, III-3, 

III-4) and five unaffected individuals (I-1, II-2, III-2, III-5, III-6), was performed on the 

craniosynostosis trait and resulted in four linkage peaks:

chr. 2q11, 0.5 Mb, rs28442891 - rs1441649/112238628 bp - 88295232 bp;

chr. 2q32, 8.6 Mb, rs10931712 - rs13394087/196677840 bp - 205260409 bp;

chr. 5q35, 5.9 Mb, rs6555884 - rs3955072/169510630 bp - 174708042 bp;

chr. 21q22, 1.6 Mb, rs7275820 - rs3787835/37409414 bp - 39189570) with maxLOD 

scores between 2 and 2.5. These four loci together comprise of 16.7 Mb containing 

195 genes (NCBI Build 37) and excluded all known craniosynostosis-associated genes 

except for MSX2.

Genome Sequencing Data Analysis

To evaluate candidate genes from the linkage regions, genome sequencing data of 

five selected family members was analyzed. The initial analysis was restricted to non-

synonymous variants, variants disrupting a splice site, and small insertions or deletions 

(up to approximately 50 bp) in the coding sequence. Additionally, variants had to be 

fully called in all five family members, absent from dbSNP version 130, and follow 

the expected autosomal dominant inheritance mode. This filtering left 134 candidate 

variants (Table II). When focusing on the regions that showed linkage, only two of 

these variants remained, both single nucleotide variants encoding missense mutations. 

One variant, in exon 18 of DNAH7 [OMIM:610061] c.2516C>G (NM_018897.2), 

predicts p.Pro839Arg (NP_061720.0). The other variant, in exon 2 of MSX2, c.443C>T 

(NM_002449.4), predicts p.Pro148Leu (NP_002440.2). Both single nucleotide variants 

were predicted to be probably damaging by PolyPhen2, and were not present in our in-
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house database Huvariome or in the data from the 1000 genomes project (13). However, 

the DNAH7variant was present once in the Exome Variant Server database.(NHLBI GO 

ESP6500), whereas the MSX2 variant was not.

Therefore, the p.Pro148Leu variant in MSX2 was a candidate given that a mutation on 

the same position in the MSX2 protein was described previously in a three-generation 

American family in which craniosynostosis was segregating in 13 individuals, and described 

as the Boston-type craniosynostosis(4, 6). Additionally, the proline is evolutionary 

conserved, see Figure 4A. This suggests that the mutation we found on the same position 

in MSX2 is likely to be the variant causing the craniosynostosis in the family reported by us.

Validation of the variant by Sanger Sequencing

The mutation within the MSX2 gene has been verified by DNA Sanger sequencing in all 12 

participating family members and was present in all affected family members and absent 

in all unaffected family members, see Figure 4B.

Table II: Outlines the bioinformatics filtering steps that have led to the identification of the two single 
nucleotide variants within the two candidate genes MSX2 and DNAH7

Total variants n = 6073719

Not in dbSNP 130 n= 892483

Fully called in all 5 family members n = 581520

Autosomal dominant n = 34433

In exon / Splice site n = 284

Nonsynonymous / disrupting splice site n= 134

In linkage area n=2



35

Boston type craniosynostosis: report of a second mutation in MSX2

DISCUSSION

The Boston type craniosynostosis [OMIM 604757] is an autosomal dominant disorder 

described by Muller et al. and Warman et al. and termed as such by Jabs et al.(4, 6, 7)

Subsequently, only one additional family with an MSX2 mutation has been described. 

Wilkie et al. screened a cohort of 362 patients with craniosynostosis for mutations (14). 

Ninety-one mutation negative patients were tested for mutations in MSX2. However, this 

did not indentify any definite pathogenic mutations. Four patients were described with 

an extra copy of MSX2 (15-18)

As noted above, Jabs et al. found the first mutation in MSX2 in a large family with a 

highly variable phenotype as described earlier by Warman et al. (4, 6). The family that we 

present is the second family with a mutation in the MSX2 gene and also shows variable 

clinical presentation. Still, we observe some striking phenotypic similarities in these two 

families. Both had frontal bossing and turricephaly in the most severely affected patients. 

Furthermore, there was an absence of gross limb abnormalities.

Interestingly, the affected amino acid in MSX2 in the family described here (p.Pro148Leu) 

was at the same codon as in the family described by Jabs et al. (p.Pro148His) and likely 

causing a similar and specific gain of function through increased or altered binding of the 

MSX2 protein to DNA (6, 19). Given the rarity of this gain of function mutation it is likely 

that gain of function is only possible through a very limited mutations repertoire within 

the DNA-binding homeodomain. Most described MSX2 mutations are loss of function 

mutations and the haploinsuffiency phenotype is different, causing parietal foramina 

[OMIM:168500] (20-24)

Osteopoikilosis which is described as a loss of function mutation of the LEMD3 protein, 

was found only in two members in this family and considered as a coincidental separate 

anomaly with an apparently de novo mutation in patient II-1 (25, 26). Only one patient has 

been described with a combination of osteopoikilosis and craniosynostosis (27). Therefore, 

we conclude that it is a coincidence that the patient reported here has osteopoikilosis and 

craniosynostosis. Brachydactyly, as seen in three of seven patients, may likely be a part 

of the variable MSX2 Boston type craniosynostosis.

In conclusion, we identified the second family with a dominant inherited mutation in the 

MSX2 gene, 20 years after the original publication. This confirms that missense mutations 

of codon 148 cause Boston type craniosynostosis and that the phenotype is variable and 

difficult to recognize on clinical grounds. Since a MSX2 gene mutation occurs rarely and is 

clinically difficult to recognize, next generation sequencing may be an effective approach 

to make a precise diagnosis.
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A.

B.

Figure 4: MSX2 protein (A) and gene (B) sequences. A: Alignment of the conserved DNA binding homeo-
box domain of MSX2 in different species. In the human protein the DNA binding domain of MSX2 is 60 aa, 
from residue 142 to 201. The proline on position 148 is indicated in red. The mutations in the patients 
described by Jabs et al. [1993] (p.Pro148His) and in the family reported here (p.Pro148Leu) are indicated 
in gray. B: Validation of Mutation with Sanger Sequence Analysis. Sanger sequencing analysis showing the 
MSX2 mutation in exon 2 (c.443C>T) in the proband III-1 (left panel). The normal DNA sequence is: CGC 
ACG CCC TTT ACC A. Homozygous normal sequence from III-2, the unaffected sister of the proband, 
is shown in the right panel. Sequences shown are representative for the sequence of the other affected 
and unaffected members from the pedigree as indicated in Figure 1. Mutated and normal sequence is 
indicated with an arrow.
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ABS TR AC T
In a screening project of patients with (complex) craniosynostosis using genomic arrays, 

we identified two patients with craniosynostosis and microcephaly with a deletion in the 

2p15p16.1 chromosomal region. This region has been associated with a new microdeletion 

syndrome, for which patients have various features in common, including microcephaly 

and intellectual disability. Deletions were identified using Affymetrix 250K SNP array and 

further characterized by fluorescence in situ hybridisation (FISH) analysis and qPCR. The 

deletions in our two patients overlapped within the 2p15p16.1 microdeletion syndrome 

area and were 6.8 and 6.9 Mb in size, respectively. FISH and qPCR confirmed the presence 

of only 1 copy in this region.

Finemapping of the breakpoints indicated precise borders in our patients and were further 

finemapped in two other previously reported patients.

Clinical features of patients with deletions in the 2p15p16.1 region vary. Including 

data from our patients, now 8 out of 9 reported patients have microcephaly, one of the 

major features, and all had intellectual disability. The current reported two patients add 

different forms of craniosynostosis to the clinical spectrum of this recently recognized 

microdeletion syndrome.

 keywords: chromosome 2p15p16.1, craniosynostosis, microcephaly, microdeletion, 

250K SNP array
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INTRODUCTION

Genomic array studies have recently revealed a new microdeletion syndrome on 

chromosome 2p15p16.1 (1-6)

In total seven patients have been described with overlapping deletions, varying from 570 

kb to 5.7 Mb, using various comparative genomic hybridization (CGH) array analyses 

(bacterial artificial chromosome (BAC), oligo or SNP based techniques).

Of these seven cases, the one with the small 570 kb deletion seems to have a significant milder 

phenotype compared to the other six with larger deletions varying from 3.2 Mb to 5.7 Mb. 

In the latter six cases common clinical features are moderate to severe developmental delay, 

mild to moderate intellectual disability, microcephaly and characteristic and recognizable 

facial dysmorphisms. In addition five were known to have optic nerve hypoplasia, three had a 

hydronephrosis, two had cortical dysplasia and hand/foot abnormalities were reported in four 

patients. Liang et al. proposed two critical regions: the distal 570 kb for developmental delay and 

some of the facial dysmorphisms and the proximal 2.1 Mb for autistic behavior, short stature, 

microcephaly, additional facial dysmorphisms, optic nerve hypoplasia and hydronephrosis (4). 

The patient reported by Prontera et al., with a deletion of 3.5 Mb, had many clinical features 

overlapping with the other described patients, but that deletion encompasses only few genes (5).

Here we report on two additional patients with overlapping de novo deletions in the same 

chromosomal area, detected by 250 K SNP array analysis. These patients do not only 

show the common features of the 2p15p16.1 microdeletion syndrome, but additionally 

show a complex form of craniosynostosis. We have fine mapped the deletion breakpoints 

of our patients and the two previously reported patients described by de Leeuw et al. and 

Chabchoub et al using qPCR(1, 2). Additionally we have further defined the published 

borders of the deletion breakpoints by mapping data in USCS build 37.

MATERIALS AND METHODS

Clinical assessment

All patients seen at the Dutch craniofacial center for syndromic forms of craniosynostosis 

undergo genetic screening for microscopic chromosomal abnormalities and/or FGFR1, 

FGFR2, FGFR3 mutations or TWIST1 mutations or deletions. In the patients described 

in this paper, who were suspected for a syndromic form of craniosynostosis, no such 

mutation was found. We performed SNP array analysis for these patients.

SNP Array analysis

Whole genome analysis was performed by microarray analysis using Affymetrix 250K 

NspI SNP arrays. The assays were carried out according to the manufacturer’s instructions 

3
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(Affymetrix GeneChip Mapping assay: www.affymetrix.com). Genotype data analysis was 

performed in Nexus 5 (Biodiscovery) using the Rank Segmentation algorithm.

FISH analysis

FISH analysis was performed on chromosomes of patients 1 and 2 and their parents.

The BAC clones used were selected from the University of California Santa Cruz UCSC 

browser and purchased from BACPAC Resources.

DNA was digested (MboI) and labeled with Bio-16-dUTP or dig-11-dUTP by a Random 

Prime labeling system (Invitrogen, Carslbad, CA). The FISH experiments were performed 

according to standard protocols with minor modifications. FISH slides were analyzed 

with a Axioplan 2 Imaging microscope (Zeiss, Sliedrecht, The Netherlands). Images were 

captured using the fluorescent software Isis (MetaSystems, Altlussheim, Germany).

Names and location (build 37) of the BAC clones used were:

RP11-373L24; 2p16.1; 61073681 – 61282740 bp

RP11-772D22; 2p15; 62167828 - 62350291 bp

RP11-355B11; 2p15; 61660124 - 61819815 bp

CTB-8L3; 2p25.3; sub-telomeric chromosome 2 probe used as a control

Quantitative PCR analysis

Relative copy numbers were determined by using real-time PCR analysis. 25 ng of patient or 

control DNA was used in a 25 µl reaction containing 1x iTaq SYBR Green Supermix with ROX 

(Bio-Rad) and 200 nM of each primer. To verify results, three replicates were performed 

for each sample. Real-time PCR was performed on a 7300 Real Time PCR system (Applied 

Biosystems), cycle conditions: 10 min 950C initial denaturation, followed by 40 cycles 15 

sec denaturation; annealing/extension and data collection 1min 600C. Data were analyzed 

using the software package 7300 System SDS Software RQ Study Application v1.2.3 

(Applied Biosystems). Q-PCR Primer sequences used and their location on chromosome 

2 are summarized in supplementary eTable SI. (See Supporting Information online)

RESULTS

Clinical description of the patients

We describe two patients who were referred to the Dutch Craniofacial Centre in Rotterdam.

Patient 1 is a male patient who was born after 42 weeks of gestation with a weight of 3240 

grams. At three months of age he had a small skull and a deviating skull circumference of 

-3 SD, based on curve “head circumference for age [growth analyser, The Netherlands 

1997]. He showed a protrusion of the central forehead and a triangular shaped head 
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when viewed from above (Figure 1A) and had a palpable metopic ridge, hypotelorism and 

supraorbital retrusion, all characteristics in concordance with a combined trigonocephaly 

and microcephaly. The face showed strabismus, mild epicanthal folds, mild ptosis, short 

palpebral fissures, smooth and long philtrum, everted lower lip and retrognathia. The 

hands showed no abnormalities; both feet show a clinodactyly of the 4th ray (Figure 1A). 

A 3D CT scan image at the age of three months showed a synostosis of the metopic and 

the sagittal sutures (Figure 1B). The coronal sutures and the lambdoid sutures were still 

open. Additionally the CT scan showed that the trigonocephaly caused the hypotelorism. 

Furthermore impressions of the inner table of the skull, mainly situated at the occipital and 

the parietal regions, were seen. The brain parenchyma and the ventricles showed a normal 

aspect. A MRI scan performed at the age of 2 years and 10 months (1.5 Tesla GE system, 

General Electric) showed a simplified gyral pattern in the supra tentorial region, a hypoplastic 

corpus callosum and a rather small aspect of the cerebellum and the pons (Figure 1C).

Patient 1 was operated for his craniosynostosis at the age of 7 months in our clinic. A 

parietal and frontal correction was performed without any complications. At the age of 

three years, his motor and mental developments were delayed. At the age of 22 months he 

started walking with support, which normally starts around the age of 13 -15 months and 

there was no speech at all. His cognitive development was more severely retarded then 

his motor development. At the age of 33 months he had a mental development matching 

a 7.5-month-old-child, and a motor development matching a 15-month-old child [mental 

and motor scale of Bayley Scales of Infant Development - Second Edition (BSID-II)]. Both 

parents had a normal phenotype.

Patient 2 was operated abroad and after that seen at our clinic at the age of 6 months. 

She was born after 36 weeks of gestational age with a weight of 2150 gram. Directly 

after birth different deformities were noticed (Figure 1D). The head showed an abnormal 

skull shape, matching the sagittal suture and left coronal suture synostosis. The skull 

circumference at birth was 29 cm (<P3). The nose had a very broad nasal root and the 

philtrum was flat. Blepharophimosis and long down slanting eyelashes were noticed. The 

ears showed an hypoplastic helical rim, and the palate was flat. The hands showed tapering 

fingers and a camptodactyly of all the digits but mainly the third and fourth digit. The 5th 

finger was small on both hands (Figure 1E). She had a very short neck and one café au 

lait spot on the left buttock. There was a severe motor and mental developmental delay. 

Motor development at the age of 13 years was restricted to walking for several hours, 

climbing stairs was possible with support. Verbally the patient was restricted to signs and 

the use of single words. Psychological testing was performed at the age of 10 years and 

matched functioning at an age level of 17 months. Both parents and the brother and sister 

of the patient had a normal phenotype.

This study was approved by the medical ethical committee of the Erasmus MC, MEC-

2005-273.

3



46

Chapter 3

Figure 1: Clinical data of patient 1 and 2. A: patient 1 at the age of six months. Note the trigonocephalic form 
of the skull and the small size of the head, the strabismus and epicanthal folds on both eyes and clinodactyly of 
the fourth ray on the feet. B: 3D CT scan of patient 1 at the age of 3 months showing a synostosis of the me-
topic and sagittal suture, hypotelorism and impressions at the occipital and parietal bones. C: MRI of patient 1 
at the age of 2 years and 10 months shows a simplified gyral pattern in the supra tentorial region and a hypo-
plastic corpus callosum. The cerebellum and pons are rather small. D: patient 2 at the age of 6 months. Note the 
abnormal skull shape and small size of the head, a very broad nasal root and a flat philtrum, blepharophimosis, 
long eyelashes and an expired helix fold of the ears. E. Hands of patient 2 at the age of 12 years. Tapering of 
the fingers is clearly seen (in the dorsal view) as is the campodactyly of the third and fourth ray on the hands.

SNP array analysis and validation with FISH analysis

DNA of patient 1 and 2 was analyzed on Affymetrix 250K Nsp1 SNP array. Both patients showed 

a deletion of respectively 6.9 and 6.8 Mb in chromosome 2, showing an overlap in the p15p16 

area (Figure 2A and B). The deletions were confirmed by FISH analysis with chromosome 

2p15p16.1 and 2p25 BAC probes (Figure 3A and B) in both patients. The deletions were 

absent in their parents (data not shown), indicating a de novo deletion in both children.
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Figure 2: Identification of the 2p15p16 deletions by analysis of Affymetrix 250 K NSPI SNP data in 
Nexus 5 (Biodiscovery) in A: patient 1 (6,9 Mb) and B: patient 2 (6,8 Mb). Blue dots represent the log2 
ratio’s of SNP probe intensities of experiment and control samples. Arrows indicate the presence of copy 
number loss at 2p15p16.

Figure 3: Fluorescence in situ hybridization analysis on metaphases obtained from cultured lymphocytes 
of patient 1 (A) and patient 2 (B). A: BAC probe RP11-373L24 (2p16) in red, 1 copy present and CTB-8L3 
(2p25.3, control probe) in green, 2 copies present. (1948.012). B: BAC probe RP11-772D22 (2p15) in 
red, 1 copy present and CTB-8L3 (2p25.3, control probe) in green, 2 copies present. (0603.002)

3
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DEFINING DELETION BORDERS AND REGION

qPCR

Breakpoints of the deletions of patient 1 and 2 were further mapped by qPCR. In 

addition we have fine mapped the breakpoints for the chromosome 2 deletion patients 

described by Chabchoub et al. and de Leeuw et al. by qPCR, as the breakpoints in these 

patients were based on 1Mb resolution BAC array data, with the BACs not covering 

the complete chromosomal 2p15p16.1 area (1, 2). Primers including base pair positions 

for qPCR are indicated in supplementary eTable SI(See supporting information online). 

Histogram displaying results of the qPCR are shown in supplementary eFigure S1 (See 

supporting information online). Results are indicated in Table I. The distal breakpoint in 

our patient 1 is between MTIF2 (2 copies; primerset cr2_s13_F2/R2) and CCDC88A 

(1 copy; cr2_s15_F1/R1). The proximal breakpoint is between COMMD1 (1 copy; 

primerset cr2_s5_COMMD1_Fp1/Rp1) and B3GNT2 (2 copies; cr2_s14_F1/R1). The 

deletion area encompasses 35 genes (excluding the pseudogenes). The distal breakpoint 

in patient 2 is between FANCL (2 copies; primerset cr2_p1_F/R) and FLJ30838 (1 copy, 

primerset cr2_p2_F/R). The proximal breakpoint is between RAB1A (1 copy; primerset 

cr2_s13_F4/R4) and ACTR2 (2 copies; primerset cr2_s13_F5/R5) with the deletion 

encompassing 43 genes (excluding pseudogenes). The deletion overlap for these two 

patients with microcephaly and craniosynostosis encompasses 23 genes, from FLJ30838 

to COMMD1.

The distal breakpoint for the patient described by Chabchoub et al. is between REL (2 

copies, primerset cr2_s12_F3/R3) and PUS10 (1 copy, primerset cr2_s8_PUS10_Fp1/

Rp1) (1). The proximal breakpoint is between SNORA70B (1 copy, primerset cr2_s9_Fp3/

Rp3) and LOC647077 (2 copies, primerset cr2_betweenXPO+FAMM_F/R), possibly in 

the XPO1 gene based on the published BAC data (1). By qPCR we could not determine 

the copy number in the area between SNORA70B and LOC647077 due to normal copy 

number variation in this area (Database of Genomic Variants; http://projects.tcag.ca/cgi-

bin/variation/gbrowse/hg19). The distal breakpoint for the patient described by de Leeuw 

et al. is between CCDC85A (2 copies, primerset cr2_betweenVRK2+LOC1001F/R) and 

the VRK2 gene (1 copy, primerset cr2_s12_F1/R1)2 (2). The proximal breakpoint is the 

same as for the patient described by Chabchoub et al. (1).

Deletions of all patients, encompassing genes in the area, are indicated in Figure 4.
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Figure 4: Microdeletion area chromosome 2p15p16 . 
Deletions (in red) are indicated in our patient 1 and 2 and in all patients described in literature until now. 
Genes in the region with basepair positions (build 37, hg19) are indicated on the left. The light-grey area 
around Xpo 1 could not be resolved by q-PCR, due to normal copy number variation in this region. The 
minimal distal deletion borders in the two subjects from Rajcan-Separovic et al. are indicated as described 
in Liu er al. [2011]. Unresolved areas are indicated in light-gray.
Basepair positions from the deletions described in the literature were all converted to build 37, hg 19. 
The deletion from Prontera et al. seems small in the figure, because in their 3.5 Mb deletion area, only 3 
genes are located (distances are not drawn to scale).
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Table 1: results breakpoint analysis by qPRC: deletion areas are indicated in gray

Name primer pair forward/reverse patient 1 patient 2 Chabchoub de Leeuw gene
1-2: cr2_s13_F2/R2 2 MTIF2

3-4: cr2_s15_F1/R1 1 CCDC88A

5-6: cr2_s13_F3/R3

7-8: cr2_betweenVRK2+LOC1001_F/R 2 CCDC85A

9-10: cr2_s12_F1/R1 1 VRK2

11-12: cr2_p1_F/R 2 FANCL

13-14: cr2_p2_F/R 1 FLJ30838

15-16: cr2_s12_F3/R3 2 REL

17-18: cr2_s8_Pus10_Fp1/Rp1 1 PUS10

19-20: cr2_s9_Fp3/Rp3 1 1 SNORA70B

21-22: cr2_betweenXPO+FAMM_F/R 2 2 LOC647077

23-24: cr2_s5_COMMD1_Fp1/Rp1 1 COMMD1

25-26: cr2_s14_F1/R1 2 B3GNT2

27-28: cr2_s13_F4/R4 1 RAB1A

29-30: cr2_s13_F5/R5 2 ACTR2

Enhancers

In the region from 55463756 – 65498387, 42 Human Vista enhancer elements are 

located (7). These are highly conserved elements with possible gene distant-acting 

enhancer activity. These 42 are all between FANCL and PAPOLG, the region that is 

deleted in seven and partially deleted in one of the patients (supplementary eFigure S2 
– See supporting information online). Fourteen of these elements have expression as 

assessed in transgenic mice, in amongst others brain (hs394,hs399,hs779,hs975,hs1076

,hs1119,hs1535), facial mesenchym (hs836) eye (hs393), and ear (hs1071). This indicates 

that these enhancers possibly play a role in the observed phenotype and have a function 

in these tissues in regulating other genes.

DISCUSSION

We describe two patients with overlapping deletions in the 2p15p16.1 region, an area 

that is recently recognized as a new microdeletion syndrome (1-6). These patients have 

the largest deletions in this area described so far, but the common overlapping deleted 

region is similar to the deletions described in the patients by Liang et al. and Felix et al.(3, 

4). Notably, the current patients add craniosynostosis as a new clinical characteristic 

to this novel microdeletion syndrome (Table II), though both patients have different 

forms. Patient 1 has a synostosis of the metopic and the sagittal suture in addition to a 

trigonocephalic head, whereas patient 2 has a synostosis of the left coronal and sagittal 

suture. Patient 1 additionally showed brain abnormalities in the form of a simplified gyral 

pattern in the supra tentorial region, a hypoplastic corpus callosum and a small cerebellum 

and pons. Because patient 2 was operated in another centre abroad, no original MRI or 

CT data was available. We propose that the craniosynostosis in these patients is primary, 
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and not secondary to the microcephaly, as this last would generally result in pansynostosis 

rather than sagittal, coronal or metopic synostosis. Except for the craniosynostosis, 

clinically both patients do resemble the 2p15p16.1 microdeletion syndrome. However, 

for some clinical features, for example, optic nerve hypoplasia and hydronephrosis, the 

children may still be too young to express these abnormalties (Table II).

Rajcan-Separovic et al. reported brachycephaly as a dysmorphic feature in their patients, 

although it is not clear what the underlying cause of this feature in these patients is (6). In 

addition to our patient 1, also the two patients from Rajcan-Separovic et al. showed brain 

abnormalities; perisylvian migration disorder (Patient 1(6)) and generally thickened cortex 

with hyperintense subcortical tissue suggesting dysmyelination or cortical dysplasia; 

enlarged 4th ventricle, mild hypoplasia of the inferior cerebellar vermis and small anterior 

pituitary and pons (Patient 2(6)). These partly overlap with the brain features in our patient.

We have determined the deletion borders in our two patients and the patients described 

by Chabchoub et al. and de Leeuw et al. by qPCR (1, 2). The data of these authors was 

based on BAC data, and therefore, the borders were not determined precisely. According 

to the Leeuw et al, XPOI is outside their deletion area, according to Chabchoub et al, XPOI 

is included in their deletion area (1, 2).However, by qPCR we have not been able to resolve 

whether XPOI is deleted in the 2 patients described by these authors. This is likely due to 

copy number variation in that area (Database of Genomic Variants; http://projects.tcag.

ca/cgi-bin/variation/gbrowse/hg19).

The patient described by Chabchoub et al.,with the smallest deletion, is also intellectually 

disabled, similar to the other patients with a deletion in this area (1). However, he is the 

only one without microcephaly. Additionally, several other clinical features observed in 

the majority of 2p15p161 microdeletion patients, for example, some facial dysmorphisms, 

optic nerve hypoplasia and hydronephrosis, could not be observed in this patient  

(Table II). This milder phenotype is in line with the small size of its deletion which is only 570 

kb versus the 3.2 to 6.9 Mb in all the other so far reported cases. The patient reported by 

Prontera et al., with a deletion of 3.5 Mb, has many clinical features overlapping with the other 

described patients, including microcephaly and intellectual disability, but no craniosynostosis 

or structural brain abnormalities and that deletion encompasses only 1 uncharacterized and 

2 known genes (5). Additionally, this patient has 2 other chromosomal rearrangements that 

could possibly influence the clinical phenotype. All nine patients have moderate to severe 

mental disability, though not all deletions overlap, indicating that genes in different regions 

can have influence on mental disability. For the microcephaly, the only gene that seems left, is 

the uncharacterized gene LOC100506891. Considering the presence of craniosynostosis in 

our two patients, we propose that the candidate region for this feature lies within the region 

between FANCL and B3GNT2. Additionally, features may depend on the different sizes 

of deletions found in the different patients and may show variable expression depending 

on genetic background(8). Also the enhancer elements present in the area may play a role.
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Some genes have a known function in brain. BCL11A (CTIP1) [OMIM:606557], a gene 

that plays a role in globin gene regulation is also highly expressed in brain and thought 

to be involved in axon outgrowth and branching (9-11). BCL11A is deleted in seven of 

the nine patients. As information on brain development on MRI is available in six of the 

patients, it is at this point not possible to conclude whether absence of this gene plays a 

major role in the formation of brain abnormalities seen in these patients. XPO1 (or CRM1) 

[OMIM:602559] is evolutionary conserved and expressed in the developing brain and 

proposed to be involved in motor neuron development and survival (12). Additionally it 

is implicated to have a role during mitosis (13) .

Notably, REL [OMIM:164910] binds to CREBBP [OMIM:600140] and EP300 

[OMIM:602700], two genes involved in Rubinstein-Taybi syndrome [OMIM:180849 

and 61384], where intellectual disability and microcephaly are part of the phenotypic 

characteristics, and structural brain abnormalities have been reported in a minority of 

cases (14).

Array CGH and SNP array screening has led to the characterization of many heterozygous 

(novel) microdeletion and microduplication syndromes(15). Intellectual disability is often 

a feature of these syndromes, as is microcephaly(8, 15-17) Additionally microcephaly 

is found as an isolated feature, but can also be associated with many syndromes (18). 

Also, disruption of one gene can lead to a combination of phenotypic features including 

microcephaly and intellectual disability(19-21). For most microdeletion syndromes it is 

difficult to pinpoint one clinical feature to the absence of a specific gene in a deletion 

encompassing many genes and this is supported by comparing with the clinical phenotype 

in this study (22-26). Mouse models carrying targeted deletions of genes within these 

regions may help to elucidate the function of the individual genes (27). Deletions in the 

2p15p16.1 area show variable clinical expression and may lead to microcephaly, intellectual 

disability and additionially to craniosynostosis, depending on the size and extension of the 

deletion combined with genetic background.
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ABSTR ACT
Why craniosynostosis patients develop elevated intracranial pressure (ICP) is still a 

mystery. Multiple factors seem to be involved and a reduced jugular foramen diameter 

is one of the factors cited in literature(1, 2). Our aim was to investigate jugular foramen 

size and its relation to venous hypertension and elevated ICP in craniosynostosis patients. 

Secondly, we evaluated whether occipital collateral veins develop as a compensatory 

mechanism for elevated ICP.

We conducted a prospective study in 41 children with craniosynostosis who underwent 

a 3D-CT-angiography. We evaluated the anatomical course of the jugular vein, the 

diameter of the jugular foramen and its surface area and matched those to the presence 

of papilledema. Additionally, we studied the anatomical variations of the cerebral venous 

drainage system including the presence and pattern of collateral veins in relation to 

papilledema, diagnosis and age.

The diameter and the surface of the jugular foramen were significantly smaller or it was 

completely occluded in 14.6% of our patients. Abnormal venous collaterals were most 

often observed in patients with Apert, Crouzon-Pfeiffer and Saethre Chotzen syndrome, 

even in children under two years of age. There was no significant difference in the number 

of collateral veins in patients with or without papilledema. Collaterals appear to reflect 

an inborn abnormality of the venous system, rather than a compensating mechanism for 

elevated ICP.

This study confirms the presence of jugular foraminal narrowing in craniosynostosis 

patients and an abnormal venous system, which may predispose to elevated ICP.
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INTRODUCTION

Elevated intracranial pressure (ICP) is a well-known, but mal-understood problem in 

craniosynostosis patients (3). It is most common in syndromic craniosynostosis in which 

the prevalence varies between 40 to nearly 100% (4-10). A routine early cranial vault 

expansion does not completely prevent the development of elevated ICP. Even after 

surgery, up to 43% of syndromic craniosynostosis patients develop elevated ICP (4, 11, 

12). Potential causes for elevated ICP are cranio-cerebral disproportion (13), obstructive 

sleep apnea (OSA), tonsillar herniation of the cerebellum (14) and venous hypertension.

Literature shows that patients with syndromic craniosynostosis have a normal brain 

volume and intracranial volume, indicating that a cranio-cerebral imbalance is seldom 

the cause for elevated ICP and only so in patients with pansynostosis12. OSA has an 

important implication for cerebral blood flow and pressure dynamics (6, 15). Although 

nearly 70% of patients with a syndromic craniosynostosis suffers from OSA, it is mainly 

of mild severity(16) and therefore its contribution to the high prevalence of elevated ICP 

seems limited. Whether tonsillar herniation develops as a result of elevated ICP or (also) 

causes the ICP to rise is still controversial.

Venous hypertension refers to obstruction of the venous outflow of the brain and 

alterations in the dynamics of flow in the superior sagittal sinus (13). Venous hypertension 

is commonly described in syndromic craniosynostosis and has been related to a reduced 

diameter of the jugular foramen. The bony narrowing may lead to obstructed outflow. As a 

result of the obstructed outflow, venous pressure and consequently CSF pressure raises. 

(1, 2, 17) Another anomaly that is frequently encountered in syndromic craniosynostosis 

is the presence of venous collaterals at the level of the posterior fossa. This appears to be 

a bypass system to allow for additional venous outflow.

Our prospective study evaluates if the jugular foramen is narrower in children with 

syndromic or complex craniosynostosis and whether its (reduced) size is associated with 

elevated ICP. Secondly, the anatomical variations of the cerebral venous drainage system 

including the occipital collateral veins are studied to evaluate whether collaterals develop 

as a compensatory mechanism for venous hypertension.

MATERIAL AND METHODS

Patients

This prospective study was undertaken between January 2007 and January 2013 at the 

Craniofacial Center of the Sophia Children’s Hospital in Rotterdam, The Netherlands. This is 

the single national referral center for syndromic craniosynostosis for a population of 16 million 

people. We included all consecutive patient with syndromic or complex craniosynostosis 
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whose diagnoses was based on genetic analysis and included Apert, Crouzon/Pfeiffer, 

Muenke and Saethre-Chotzen syndrome. A craniosynostosis was defined as complex 

when there were at least two sutures prematurely closed without genetic anomalies of 

the FGFR2, 3 or TWIST1 genes. All patients routinely underwent 3D-CT scanning as a part 

of their diagnostic and preoperative assessment. Medical Ethical approval was given to 

extend their 3D-CT-scan to 3D-CT angiography (2005-273) after consent by the parents.

Different patient groups were defined for analysis. In the first group (I) patients with a 

syndromic or complex craniosynostosis without papilledema at routine fundoscopy were 

enrolled. In the second group (II) are syndromic or complex craniosynostosis patients with 

papilledema. The third study group (III) are patients who had a CT angiography for other 

indications such as hemiplegia, sickle cell disease and headache and these patients had 

no craniosynostosis or signs of elevated ICP. This group was used for control measures 

of the bony and vascular part of the jugular foramen.

3D-CT scan

All patients underwent a 3D-CT angiography, made by a Siemens CT 128 slice scanner and 

the imaging data sets were accessible for analysis by means of multi-planar reformatted 

images. All scans were made using the same protocol. (941044Q)

The 3D-CT was analyzed for the following parameters:

1:  Whether or not the jugular vein coursed through the jugular foramen.

2:  The diameter and the surface area of the jugular foramen.

3:  The presence and pattern of venous collaterals

Ad 1. The principal researcher (JF) and a pediatric radiologist (ML) described the anatomic 

course of the jugular vein and determined whether the vein passed the foramen.

Ad 2. To measure the diameter of the jugular vein a set of reformatted images was obtained 

in the line of the jugular foramen (Figure 1). Figure 1A and 1B show the jugular foramen is 

clearly visible at the coronal and transversal images. Figure 1C shows how the axis is set to 

allow standardized measurements of the jugular foramen. The 3D-CT allowed verification 

in the third dimension to assess if the jugular foramen was accurately measured. All the 

exact measurements were done in the parasagittal images (Figure 2). The narrowest point 

of the inflow of the jugular vein is measured at the right and left side, which is marked by 

the red line in figure 2. The outflow of the jugular foramina is marked by the blue line and 

is also measured at each side. The bilateral inflow and outflow measurements provide 

a total of 4 measurements per CT scan, from which we have calculated the mean right 

and left sided diameter and a mean combined diameter (sum of the mean right and left 

sided diameter)(2). Theoretically, the blood flow is most compromised by either inflow or 

outflow, depending on which was the most narrow. Therefore we also analyzed the results 

by using the mean of the right and left sided smallest measurement from each side.
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Figure 1: Reformatted images of the jugular foramen in coronal (A), axial (B), sagittal (C) and axial view (D) 

Figure 2: Measurement of the jugular foramen. Red line; narrowest point of inflow of jugular vein. Blue 
line; outflow of the jugular foramina.

A. B.

D.C.
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We also measured the surface area of the jugular vein by performing a vessel segmentation 

analysis which automatically detects and measures the shortest axis of the annotated 

vessel inside the foramen (in orthogonal planes). It also measures the total area of the 

vessel in every orthogonal plane and aquires a 3D view of the jugular foramen (Fig 3). 

For analysis, we have used the surface area at the most narrow point in the foramen. 

(MeVisLab 2.1 - MeVis Medical Solutions and Fraunhofer MEVIS)

Figure 3: Measurement of the total area and smallest diameter of the jugular vein (A) and 3D acquisitions 
of the jugular foramen (B - C) using vessel segmentation analysis in orthogonal planes.

The principal researcher performed all measurements and a pediatric radiologist who 

was blinded for the measurements of the first observer additionally captured the first 

ten patients.

Ad 3. The anatomical definitions for collateral venous drainage mechanisms as described by 

Jeevan et al. were used to judge the venous collateral drainage pattern (A-G)(17). Moreover, 

the principal researcher and pediatric radiologist scored all scans for the inferior sagittal 

sinus, percalosal veins, the pterygoid sinus and the transverse sinus (I t/m K) as follows: 0 

points when there was a normal pattern of drainage, 1 when there were several collaterals 

or very wide veins, and 2 points when there were a lot of collaterals and extremely wide 

veins. When possible, right and left site were scored (Figure 4). All scores for each patient 

were added, ranging from 0 to 34. Total scores for each patient are given and compared 

between group I, II and III. Total scores were also compared for the separate craniosynostosis 

syndromes. The following anatomical definitions were used in identifying the collateral venous 

drainage mechanisms:

A: Parietal emissary vein connects the superior sagittal sinus with the veins of the scalp.

B:  Occipital emissary vein arises from the medial border of the transverse sinus or 

torcula herophili and drains to the occipital vein and internal vertebral plexus.

C: Mastoid emissary vein drains the lateral sinus (medial lateral portion of the 

transverse and sigmoid sinus) to the occipital vein or to the posterior auricular vein.

D: Condyloid emissary vein drains the lower genu of the sigmoid sinus or jugular sinus 

to the deep cervical vein through the condyloid canal.
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Figure 4: Example of a patient with many collaterals.

E: Occipital sinus is situated in the attached margin of the falx cerebelli and is generally 

single, but occasionally there are two. It drains from the torcula downwards to the 

internal vertebral plexus.

F: Marginal sinus is located between the layers of the dura at the rim of the foramen 

magnum. This sinus encircles the foramen magnum, communicating with the basal 

venous plexus of the clivus anteriorly and with the occipital sinus posteriorly. It 

normally drains to the sigmoid sinus or jugular bulb by a series of small sinuses. 

Anastomotic connections to the internal vertebral venous plexus as well as to 

paravertebral and/ or deep cervical veins are typically present.

G: Venous collaterals of the ophthalmic vein into the facial vein

H: Inferior Sagittal Sinus

I: Pericallosal vein

J: Pterygoid sinus plexus

K: Transverse sinus

Fundoscopy

Papilledema was used as a sign of elevated ICP. Funduscopy is done on a yearly base at 

least up to the age of 6 by a pediatric ophthalmologist. Papilledema was defined as blurring 

of the margins of the optic disk after exclusion of hyperopia by cycloplegic retinoscopy, 

because a hyperopic papil can resemble papilledema without being a sign of elevated ICP. 

All fundoscopies taken at the same time as the CT scan were included. The correlation 

between the occurrence and type of venous collaterals in our study group I and II and the 

presence of papilledema was examined.

4
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Statistical analysis

SPSS Software was used for statistical analyses (IBM SPSS Statistics for Windows, Version 

21.0. Armonk, NY: IBM Corp). Mann-Whitney U test was used for statistical analysis 

off the differences of diameter in between the groups, and p < 0,05 was regarded as 

significant.

RESULTS

We included a total number of 58 patients: 41 patients with a syndromic or complex 

form of craniosynostosis (11 Apert syndrome, 15 Crouzon-Pfeiffer syndrome, 7 Muenke 

syndrome, 3 Saethre-Chotzen syndrome, 5 complex craniosynostosis), and 17 control 

patients. Fundoscopy showed papilledema in 15 patients with syndromic craniosynostosis. 

The baseline characteristics of the subpopulations of patients are summarized in Table 

1 and 2.

Table 1: Patient characteristics of the study groups: Study group I= patients with syndromic craniosynostosis 
without papilledema. Study group II = patients with syndromic craniosynostosis with papilledema. Study 
group III = control group

Study group I II III

N 26 15 17

Male/Female 15/11 7/8 9/8

Mean Age (Years)
(minimum – maximum)

6,22
(0,13-18,96)

5,60
(1,50-13,89)

7,94
(0,19-16,4)

Table 2: Patient distribution of diagnosis in study groups : Study group I= patients with syndromic 
craniosynostosis without papilledema. Study group II = patients with syndromic craniosynostosis with 
papilledema.

Study group I II

Apert 10 1

Crouzon-Pfeiffer 6 9

Muenke 6 1

Saethre-Chotzen 1 2

Complex 3 2

The course of the jugular vein through the jugular foramen

In six (6/41 = 14.6 %) patients with syndromic and complex craniosynostosis patients we 

noticed an anatomic variance where the jugular vein did not pass the jugular foramen. Of 

these 6 patients, 2 had Apert syndrome, 1 had Crouzon-Pfeiffer syndrome, 1 had Muenke 

syndrome, 1 had Saethre-Chotzen syndrome and 1 had a complex craniosynostosis. 

Papilledema was present in 5 of these 6 patients. These patients were also included in 

the analyses of the jugular foramen. Their characteristics are presented below:
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The first patient with Apert syndrome demonstrated an asymmetric jugular foramen. 

The right foramen is smaller than the left. The jugular veins are both hypoplastic. Multiple 

venous collaterals are shown. Total collateral score is 15, with mainly collaterals at the 

mastoid emissary vein , the condyloid emissary vein, the marginal sinus, the venous 

collaterals of the ophthalmic vein, the inferior sagittal sinus, the pterygoid sinus plexus. 

There is a dilatation of the ventricles .

The second patient has Apert syndrome. The left jugular foramen is wide compared to 

the right foramen and the right jugular vein is hypoplastic. The ventricles are large and 

there is some scalloping of the skull. At the time of the CT scan, at the age of 2 years and 

8 months, papilledema was detected. In the following years his papilledema disappeared 

but it reappeared at the age of 5 years, accompanied by an aggravation of his Chiari 

malformation. The total collateral score is 16 and the collaterals are mainly occipital, 

mastoid and condyloid emissary vein, the marginal and the inferior sagittal sinus, and the 

pterygoid sinus plexus.

The third patient, with Crouzon syndrome, showed a hypoplastic transverse sinus and 

sigmoid and jugular vein on the left side. The jugular foramen had a normal anatomy. He 

had persistent papilledema. The scan showed no Chiari malformation. The total collateral 

score was 8 with the collaterals mainly seen at the inferior sagittal sinus, the ophthalmic 

vein, the occipital sinus, the condyloid and mastoid emissary vein. Three years later, at the 

age of 6 years, a Chiari malformation had developed.

The fourth patient has Muenke syndrome. The transverse sinus and sigmoid sinus, the 

jugular vein and foramen on the left side are hypoplastic. Ventricles are wide but matching 

his macrocephaly. No signs of elevated intracranial pressure were present. The total 

collateral score was 9.

The fifth patient with Saethre-Chotzen syndrome has an asymmetrical jugular vein, and 

the right jugular vein was more wide compared to the left. The left jugular foramen and 

the jugular vein were hypoplastic as were the transverse sinus and sigmoid sinus. There 

size of the ventricles was normal. At the time of the CT scan there was papilledema. Many 

collaterals gave this patient a total collateral score of 11.

The sixth patient has complex craniosynostosis. The transverse sinus and sigmoid 

sinus, the jugular foramen and the vein are hypoplastic on the left side. No signs of 

elevated intracranial pressure are present. At the time of scanning there was no Chiari 

malformation. One year later, at the age of 4 he developed a tonsillar herniation. At 

that time invasive intracranial pressure measurement was done and showed elevated 

intracranial pressure: baseline pressure at daytime 10 mmHg and raised from 5 to 16 

mmHg during sleep, 4 plateaux were observed with a pressure above 35 mmHg and a 

duration of longer than 20 minutes. Few collaterals were present with a total collateral 
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score of 5. Collaterals were seen at the site of the mastoid and condyloid emissary vein 

and the occipital and inferior sagittal sinus.

Diameter of jugular foramen

There were no differences when comparing the measurements of the jugular foramen 

made by the two different researchers. First we compared all syndromic craniosynostosis 

patients with our control group. The diameter of the jugular foramen in patients with 

syndromic craniosynostosis was significantly smaller compared to controls. Patients had 

a mean combined diameter of 9.09 mm and controls had a mean combined diameter of 

12.05 mm. (p = 0,002).

Subgroup analyses shows that patients with syndromic craniosynostosis without 

papilledema (study group I; 8.74) have a smaller diameter of the jugular foramen compared 

to controls (study group III; 12.05) (p = 0.01 Mann-Whitney). Patients with syndromic 

craniosynostosis and papilledema (group II) do also have a significantly smaller mean 

combined diameter of the jugular foramen compared to our controls in group III (p = 0.017 

Mann-Whitney) (Table 3)

Table 3: Diameter of the jugular foramen. 

Study group I II III

N 26 15 17

Mean combined diameter
(p value compared to group III)

8,74*
0.001

9,69*
0.017

12.05

Minimum mean combined diameter 4,54 7,12 7,17

Maximum mean combined diameter 13,04 13,17 16,45

Minimum diameter
(p value compared to group III)

1.23*
0.001

1.93
> 0.05

2.34

Group I= patients with syndromic craniosynostosis without papilledema. group II = patients with syndromic 
craniosynostosis with papilledema. group III = control group.
* = significant p<0.05

Correlation between surface area of jugular foramen and papilledema

The surface area of the jugular foramen at its most narrow part of patients with 

papilledema is not significantly different from that of patients without papilledema. 

(p>0.05 Mann Whitney U test) (Table 4). We do find significant differences between the 

2 syndromic craniosynostosis groups and the control group, with a much smaller jugular 

foramen in the craniosynostosis patients.
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Table 4: Diameter and surface area of the jugular foramen. 

Study Group I II III

N 25 14 17

Mean combined surface area measurements
(p value compared to group IV; MWU test)

7,03*
(p < 0.001)

8,5*
(p = 0.002)

11,4

Smallest surface area right
(p value compared to group III; MWU test)

15.8*
(p < 0.001)

24.9*
(p < 0.05)

44,5

Smallest surface area left
(p value compared to group III; MWU test)

19.1*
(p < 0.05)

21.7*
(p < 0.05)

39.0

Mean diameter right
(p value compared to group III; MWU test)

3,34*
(p < 0.001)

4.34*
(p <0.05)

6.01

Mean diameter left
(p value compared to group III; MWU test)

3.69*
(p = 0.001)

4,13*
(p <0.05)

5,38

Group I= patients with syndromic craniosynostosis without papilledema. group II = patients with syndromic 
craniosynostosis with papilledema. group III = control group.
MWU: Mann-Whitney U test
* significant p<0.05

Venous collaterals and the relationship with papilledema

The scores for the 11 items on venous collaterals are shown in table 5. Most abnormalities 

were seen at the condyloid emissary vein that drains the lower genu of the sigmoid sinus 

or jugular sinus to the deep cervical vein through the condyloid canal (98 %), the occipital 

sinus (93%) and the inferior sagittal sinus (95%) (Table 5). A high degree of symmetry 

is found for the areas that were scored bilateral. In the control group only the mastoid 

and the condyloid canals are sometimes enlarged. (31% and 44% respectively). The total 

collateral score is 10.6 for the craniosynostosis patients and 2.0 for the control group. 

This is a highly significant difference (p < 0.002).

To investigate the development of collaterals with increasing age, the results are plotted 

in figure 5. Study group I (syndromic craniosynostosis without papilledema) has a 

slight upward trend line for the development of collaterals. Study group II (syndromic 

craniosynostosis with papilledema) shows a flat line. Remarkable is that the youngest 

patients under the age of 2 years already have high numbers of collaterals.

4
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Table 5: Incidence of collateral venous drainage in syndromic craniosynostosis patients

Collaterals Craniosynostosis 
patients (N = 41)

Number of patients 
with Collateral (%)

Controls 
(N = 16)

Number of patients 
with Collateral (%)

A 1 (2 %) 0 (0%)

B right
B left

10
6 

(24%)
(15%)

0 
0 

(0%)
(0%)

C right
C left

28
24 

(68 %)
(59 %)

5
4

(31%) 
(25%)

D right
D left

40
40

(98%)
(98%)

7
7

(44%)
(44%)

E 38 (93%) 0 (0%)

F right
F left

22
22

(54%) 
(54%)

0 
0 

(0%)
(0%)

G right
G left

8
9

(20%)
(22%)

0 
0 

(0%)
(0%)

H 39 (95%) 0 (0%)

I 1 (2%) 2 (13 %)

J right
J left

23
26

(56%) 
(63%)

4
4

(25%)
(25%)

K 5 (12%) 2 (13%)

A: parietal emissary vein, B: occipital emissary vein, C: mastoid emissary vein, D: condyloid emissary vein, 
E: occipital sinus, F: marginal sinus, G: venous collaterals of the ophthalmic vein to the facial vein,  
H: inferior sagittal sinus, I: pericallosal vein, J: pterygoid sinus plexus, K: transverse sinus

 

Figure 5: shows the development of the total collateral score over time. Study group 1= patients with 
syndromic craniosynostosis without papilledema. Study group 2 = patients with syndromic craniosyn-
ostosis with papilledema.
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Table 6 shows the presence of occipital collaterals and the presence of papilledema at the 

time of CT scan or developing later during life. This table also shows that 20 out of 41 patients 

have papilledema at the time of the CT scan or develop papilledema later in time. Patients 

with or without papilledema have the same amount of collaterals. A more specific result is 

obtained if we investigate the development of collaterals for each syndrome (table 7).

Results are shown for the total score of collaterals, and for only the occipital collaterals 

as they are most commonly encountered.

The total score of collaterals is highest for the diagnoses Apert, Crouzon-Pfeiffer and Saethre 

Chotzen syndromes The score for occipital collaterals only is highest for the diagnoses 

Apert and complex craniosynostosis, followed by Crouzon-Pfeiffer, Saethre Chotzen. In 

contrast, patients with Muenke syndrome and the controls have no occipital collaterals.

Table 6: Crosstab of the mean score of total collaterals and a history of papilledema.

Mean Total Collaterals N (Number of patients)

No papilledema 11.0 21

Papilledema 11.0 20

11.0 41

Table 7: Table shows the mean of the occipital collateral score (range 0 to 2) and mean total collateral (range 
0 to 22) Score for each diagnose

Diagnosis (N) Occipital collateral score (Mean) Total collateral score (Mean)

Apert (11) 0,55 11,36

Crouzon-Pfeiffer (15) 0,33 11,27

Muenke (7) 0,00 10,71

Saethre- Chotzen (3) 0,33 14,00

Complex (5) 0,60 7,60

Controls (17) 0,00 2,00

DISCUSSION

Two hypothesis were tested in this study: first that a narrow jugular foramen is causally 

related to elevated intracranial pressure in children with syndromic or complex 

craniosynostosis, and second that presence of collateral veins is a compensation 

mechanism for elevated ICP.

In contradiction to our first hypothesis, our study shows no difference in diameter of 

the jugular foramen between the syndromic craniosynostosis patients with and without 

papilledema. This is also in contrast with earlier published research(2). Rich et al. (2003) 

published a study in which they showed significantly narrower jugular foramina in children 
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with raised ICP based on invasive ICP measurements, in a similar craniosynostosis study 

group. This difference might be explained by using different methods: first, we have a 

study population of 58 patients and Rich uses 31 patients in his study. This may influence 

the results and gives more power to our study. Second, Rich et al. has a difference in age 

of approximately 2 years between his patient group with elevated ICP and the control 

group. That difference is limited to 8 months in our study and we have shown that age is an 

important factor influencing the diameter of the jugular foramen. Third, the previous study 

uses a control group of 10 patients with non syndromic craniosynostosis. Nevertheless, 

2 of these patients do have a bilateral coronal synostosis and should have been excluded. 

Fourth, the previous study used conventional CT scans without angiography and without 

reformatted images. Particularly the use of CT-A enabled us to recognize the 6 patients in 

whom the jugular vein did not cross the foramen. Fifth, we used papilledema as an indicator 

of raised ICP and Rich uses invasive ICP measurements. It is known that papilledema is 

age dependent and its absence doesn’t mean the ICP is normal. (18)

We show that syndromic and complex craniosynostosis patients have a smaller jugular 

foramen compared to healthy control patients. This finding is in agreement with Booth 

et al. who reveal a significant decrease in jugular foramen in craniosynostosis patients 

compared to age-matched controls(1).

Our second hypothesis, presence of collateral veins is a compensation mechanism 

for elevated ICP, is based on several studies. Extensive venous collaterals have been 

found in patients with syndromic craniosynostosis, especially occipitally (13). Occipital 

collaterals indicate an abnormal drainage from intracranially to extracranially (19), which 

is regarded to be a significant contributor to increased ICP (13, 17). To test our hypothesis 

we investigated the venous drainage at 11 anatomical points. In agreement with Jeevan 

and co-workers we can confirm that patients with syndromic craniosynostosis often 

demonstrate prominent venous anatomy. We hypothesized that venous collaterals 

develop to reduce the blood component of the intracranial volume and thus lower the 

ICP. Apert, Crouzon-Pfeiffer and Saethre Chotzen are the patients with the highest 

development of collaterals. In agreement with our hypothesis, they are also the patients 

who develop elevated intracranial pressure. Similarly, patients with Muenke syndrome 

rarely show collaterals as they seldom develop elevated ICP. These findings support our 

hypothesis. However, no significant differences are found in between the craniosynostosis 

groups with and without papilledema.

Furthermore, our study also shows the presence of collaterals in very young patients. 

Even patients under the age of two years already have prominent venous collaterals. This 

implies that collateral development is an intrinsic disorder. The known mutations (FGFR2, 

TWIST1) may lead in these children to a congenital abnormal venous pattern. We are 

therefore more convinced that the collaterals signify an inborn disorder of the venous 

system, which makes these patients more prone to venous hypertension.
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Intrinsic impairment in development could involve a dysfunction of the FGFR2 gene in 

embryogenesis. In the fourth week, a process of folding converts the neural plate to a 

hollow neural tube, which sinks into the body wall and differentiates into brain and spinal 

cord, followed by formation of a cartilaginous neurocranium. During this process a cartilage 

template has been formed, vascularized and osteoclasts and osteoblasts are recruited to 

replace the cartilage scaffold with bone (20, 21). The jugular foramen is situated between 

the petrous portion of temporal and occipital bones and originates from persistence of the 

embryologic foramen lacerum posticus, the space between the basi-occiput and auditory 

canal. Additionally, animal studies have shown FGFR-2 expression at the neural tube and 

cranial base during embryogenesis (22-25). Several studies reported abnormalities of the 

skull (26-30) and skull base (28, 31, 32) in Crouzon syndrome in humans, and in mice (33-35). 

Hence, it is likely that FGFR-2 gene mutations have an effect on brain and skull development.

Furthermore, we found an aberrant course of the jugular foramen and a very different 

venous pattern in 6 of our patients (15%). In 4 of these patients there were signs of 

elevated intracranial pressure. Only in our Muenke patient we did not find any signs of 

elevated intracranial pressure.

These collateral veins are very important for these patients, as is shown in the dramatic 

case report of a girl with Pfeiffer syndrome(36). As the scalp incision for a cranial vault 

expansion was made, an enormous trans-osseous venous channel emerging in the midline 

parieto-occipital region was transected. Bleeding was controlled, but the patient developed 

intractable intracranial hypertension. The surgery was abandoned; the patient died shortly 

thereafter. At autopsy, the authors found that most of the normal pathways for intracranial 

venous drainage were severely narrowed and that the trans-osseous venous channel 

had been the major pathway for venous drainage in this patient. It is therefore extremely 

important that the venous outflow pattern is taken into consideration when planning 

surgery for these patients, particularly in case of posterior or suboccipital interventions.

CONCLUSION

In conclusion, we show that a smaller jugular foramen is common in patients with 

syndromic craniosynostosis, irrespective of presence of papilledema. The jugular foramen 

diameter may be aberrant because of different embryological development instead of 

being influenced by intracranial pressure. The high number of collaterals already present 

in very young patients with syndromic craniosynostosis and the aberrant course of the 

jugular foramen in 15% of patients in the current study implies an embryologic origin of 

the anomalous venous drainage, rather than a response to elevated ICP.

This research project reveals a piece of the puzzle of elevated intracranial pressure in 

patients with syndromic craniosynostosis.
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Advances in knowledge
A significant reduction in water diffusion anisotropy was found in children with syndromic or complex 
craniosynostosis. A primary congenital brain disorder rather than the size or deformities of the skull 
or the associated hydrocephalus might be a better explanation for the mental deficiency common in 
craniosynostosis patients.

Implications for patient care
Our findings may indicate a need to a different approach and may initiate a different treatment of the 
different craniosynostosis syndromes.



ABS TR AC T
Purpose: To assess whether architectural alterations exist in the white matter of patients 

with syndromic and complex craniosynostosis.

Materials and Methods: The Medical Ethics Committee approved this study. Written 

informed consent was obtained from parents or guardians before imaging. A prospective 

study was performed in children with syndromic and complex craniosynostosis aged six to 

fourteen years. Forty-five patients were included: four had Apert syndrome, 14 Crouzon-

Pfeiffer syndrome, eight had Muenke syndrome, 11 Saethre-Chotzen syndrome and eight 

had complex craniosynostosis patients. In addition, seven control subjects were evaluated. 

For Diffusion Tensor Imaging, an echo planar sequence was used with a diffusion gradient 

(b = 1000 sec/mm2) applied in 25 noncollinear directions. Regions of interest (ROIs) were 

placed in the following white matter structures: pontine crossing tract (PCT), corticospinal 

tracts (CST), medial cerebral peduncles (MCP), uncinate fasciculus measured bilaterally 

(UNC), anterior commissure (AC), bilateral measurements of the frontal and occipital 

white matter (FW and OW), fornix (FX), corpus callosum measured in the genu (GCC) 

and splenium (SCC) and the corpus cingulum measured bilaterally (CG). Eigenvalues were 

measured in all ROIs and Fractional Anisotropy (FA) was calculated.

Results: Across all measured regions of interest FA values were generally lower in all 

patients combined than in the control subjects (p<0.001). There were no significant 

differences among subgroups of patients.

Conclusion: DTI measurements of white matter tracts reveal significant white matter 

integrity differences between children with craniosynostosis and healthy control subjects. 

This could imply that the developmental delays seen in these patients could be caused by 

the presence of a primary disorder of the white matter microarchitecture.
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INTRODUCTION

Craniosynostosis is a birth defect characterized by premature fusion of at least one cranial 

suture, with a birth prevalence of approximately 3-5 per 10,000 live born infants (1). 

In 40% (1:6250) craniosynostosis is a part of a syndrome (2). Children with syndromic 

craniosynostosis often have unexplained neuropsychological impairment and a lower 

intelligence quotient (IQ) (3). The decreased intracranial volume and elevated intracranial 

pressure resulting from the restricted skull growth have been held responsible for these 

impairments. As a consequence, most children with craniosynostosis receive corrective 

surgery to enlarge the cranial cavity in the first year of life. Remodeling the cranial vault 

in an attempt to increase the intracranial volume and control intracranial hypertension 

while improving the patient’s appearance has been the mainstay of surgery for syndromic 

craniosynostosis (4). Some craniosynostosis patients show developmental delay despite 

timely surgical intervention, the underlying cause of the delay is unclear.

Apert syndrome is an autosomal dominant syndrome and is caused by one of two 

fibroblast growth factor receptor 2 (FGFR2) mutations in more than 98 % of the cases. 

This syndrome is characterized by symmetric complex syndactyly of hands and feet, 

bicoronal synostosis, exorbitism, hypertelorism and midface hypoplasia. Crouzon-

Pfeiffer syndrome is also an autosomal dominant syndrome and predominantly caused 

by mutations in FGFR2, but incidentally caused by mutations in the FGFR1 or FGFR3. 

Crouzon-Pfeiffer syndrome is characterized by midface hypoplasia, exorbitism and 

various forms of craniosynostosis. Muenke syndrome is an autosomal dominant disorder 

with incomplete penetrance, caused by the P250R mutation of the FGFR3 gene. These 

patients are characterized by macrocephaly, unilateral or bilateral craniosynostosis, 

and hearing loss. Saethre-Chotzen syndrome is an autosomal dominant disorder with 

incomplete penetrance, predominantly caused by mutations or deletions in the TWIST 

gene. The phenotype associated with this syndrome incorporates coronal synostosis, 

upper eyelid ptosis, external ear anomalies and limb abnormalities, such as brachydactyly, 

syndactyly, and clinodactyly or broad halluces. A mutation may not be found in all patients 

with a phenotypically syndromic craniosynostosis. Complex craniosynostosis is defined as 

fusion of two or more cranial sutures without presence of the known mutations in either 

FGFR or TWIST. The intelligence of patients with a syndromic form of craniosynostosis 

may vary from normal to severe mental retardation.

To search for an explanation for their developmental delay, the brains of these patients 

have been studied repeatedly with conventional magnetic resonance (MR) imaging. White 

matter alterations and an abnormal gyral structure have been reported (5-9), and these 

anomalies could indicate either secondary causes or a primary congenital disorder. In 2007, 

Raybaud et al. (10) published a review with the aim of resolving the controversy regarding 

whether the brain abnormalities seen in patients with syndromic craniosynostosis are 

primary or secondary to the bone deformities. In their review they state that experimental 
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neurobiological evidence supports the hypothesis that the fibroblast growth factor 

receptor FGFR1, FGFR2, and FGFR3 mutations, causal of syndromic craniosynostosis, may 

also be causal of diffusely abnormal white matter development. Specifically, they show 

that developmental white matter disorders are related to mutations in the L1 cell adhesion 

molecule (L1CAM). Furthermore they stated that L1CAM cannot play its role without 

a close interaction with FGFR genes. Combining these facts they suggest that cerebral 

abnormalities in syndromic craniosynostosis are an expression of a primary disorder of the 

white matter. White matter has been reported as atrophic or hypoplastic in all syndromes 

(5, 7-10). In addition, partial or total agenesis of the pellucid septum has been reported 

(5-10). Cerebellar involvement, ascribed to a small fossa posterior associated with tonsillar 

herniation, has also been documented often (5, 6, 8). Raybaud and coworkers concluded 

that the observed white matter abnormalities, assessed on conventional brain MR images, 

could constitute a primary disorder (10).

Diffusion Tensor MR imaging enables us to study the micro-architectural organization of 

brain tissue in vivo. Diffusion-tensor imaging can provide an objective and reproducible 

assessment of the white matter derived from quantitative measures (11, 12). This 

offers the opportunity to visualize and quantify the white matter of children with 

craniosynostosis. The aim of this prospective Diffusion-tensor imaging study was to assess 

whether architectural alterations exist in the white matter of patients with syndromic and 

complex craniosynostosis.

METHODS

The Medical Ethics Committee approved this study. Prior to scanning, written informed 

consent was obtained from the parents or guardians of all patients and control subjects.

Subjects

Data for this study were obtained in the context of a larger prospective ongoing study on 

craniosynostosis. (Collected by J.M.G.F. and I.M.J.M with 4 and 12 years of experience 

in plastic surgery, respectively). Craniosynostosis is characterized by premature fusion 

or agenesis of calvarial sutures. Because of the craniosynostosis, normal growth of the 

skull related to the affected suture is restricted. To accommodate the growing brain, 

compensatory skull growth occurs in the other directions resulting in cranial deformation. 

Children with syndromic or complex craniosynostosis were enrolled. Children included 

in the diffusion-tensor imaging study had to be between 6 and 14 years. All participants 

were recruited from the Sophia children’s hospital, a national referring center for 

craniosynostosis patients. Fifty-six patients underwent both MR imaging and genetic 

testing. For comparison, we included seven healthy control subjects with normal 

neuropsychological test results and without abnormalities on conventional MR images. 

Grounds for excluding subjects from the group included the presence of severe artifacts 
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and/or distortions due to braces and metallic remains from surgery. Consequently, 11 of 

56 patients (20%; mean age, 11.7 years, 8.5 – 13.9 years) were excluded. Two of those 

patients had Apert syndrome, two had Crouzon-Pfeiffer syndrome, two had Muenke 

syndrome, three had Saethre-Chotzen syndrome, and two had a complex form of 

craniosynostosis.

In addition, our patient group was further categorized according to the level of the 

individual syndromes as well as on genetic grounds. The patients with syndromic and 

complex craniosynostosis were analyzed separately in comparison to the control subjects. 

Moreover, patients were further classified into three groups on the basis of genetics. The 

first group consisted of patients with FGFR mutations (FGFR group). This group included 

patients with Apert, Crouzon/Pfeiffer, or Muenke syndromes. The second group consisted 

of patients with mutations and deletions in TWIST (TWIST group) and included all patients 

with the Saethre-Chotzen syndrome. The third group consisted of patients with no 

demonstrable genetic mutation and included patients with complex craniosynostosis 

(complex craniosynostosis group). Patients in these three genetically classified groups 

were compared with each other and with the control subjects.

Image acquisition

All imaging data, including those from diffusion-tensor imaging, were acquired from brain 

MR images obtained with a 1.5-T unit (GE Medical Systems, Milwaukee, Wis). Diffusion-

tensor imaging data were obtained by using a multi-repetition single-shot echo planar 

sequence with a section thickness of 3 mm and no gap. Diffusion-tensor images were 

obtained in 25 gradient directions with the following parameters: sensitivity, b = 1000 

sec/mm2, repetition time, 15000 msec; echo time, 82.1 msec; one signal acquired; 240 

x 240 mm2 field of view, and 128 x 128 matrix. This resulted in a voxel size of 1.8 x 1.8 x 

3.0 mm3.

Data Collection

ROIs of standard shape (round) and size (36 voxels) were placed manually in 10 

predetermined anatomic locations in both hemispheres by a researcher experienced in 

diffusion-tensor imaging (I.V.K., with one year of experience; M.H.L., with 15 years of 

experience in pediatric neuroradiology; and J.D., with 8 years of experience in pediatrics 

and neurologic research). The anatomic locations used were as follows: pontine crossing 

tract (PCT), corticospinal tracts (CST), medial cerebral peduncles (MCP), uncinate 

fasciculus measured bilaterally (UNC), anterior commissure (AC), bilateral measurements 

of the frontal and occipital white matter (FW and OW), fornix (FX), corpus callosum 

measured in the genu (GCC) and splenium (SCC) and the corpus cingulum measured 

bilaterally (CG). To optimize ROI placement, standard DTI color maps of white matter 

atlases (13, 14) were used to determine the most suitable section for every structure 

individually (Fig 1). The investigators involved in ROI placement were blinded to clinical 

presentation and outcome.

5
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Figure 1 : 
FA colormaps examples at different levels used for our ROI placements in one of our patients. 
Abbrevations used; PCT=pontine crossing tract; CST=corticospinal tract; MCP=medial cerebral 
peduncle; UNC=uncinate fasciculus; AC=anterior commissure; FX=fornix; MWM=mean white 
matter; GCC=genu of corpus callosum; SCC=splenium of corpus callosum; CG=corpus cingulum. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2:  
Mean fractional anisotrophy (FA) values according to patient group FGFR (p, n=26), TWIST (□, n=11), 
Complex (◊, n=8), Controls (●, n=7) 

Figure 1: FA colormaps examples at different levels used for our ROI placements in one of our patients.
Abbrevations used; PCT=pontine crossing tract; CST=corticospinal tract; MCP=medial cerebral peduncle; 
UNC=uncinate fasciculus; AC=anterior commissure; FX=fornix; MWM=mean white matter; GCC=genu of 
corpus callosum; SCC=splenium of corpus callosum; CG=corpus cingulum.

Statistical Analysis

To explore eigenvalues, λ
1
, λ

2
 and λ

3
 obtained from the left and right hemispheres per 

region, per subject, were averaged to yield a mean score. Mean White Matter (MWM) is 

given by the mean of the right and left frontal and occipital white matter measurements. 

From the mean eigenvalues, Fractional Anisotropy (FA) and the Apparent Diffusion 

Coefficient (ADC) were computed. ADC was computed by the formula (λ
1
+ λ

2
+ λ

3
)/3 . 

FA was calculated by using the formula derived by Basser et al. (15).

Software (The Statistical Package for the Social Sciences version 15.0 for Windows (SPSS, 

Chicago, Ill) and Statistical Analysis Software (SAS) was used for statistical analysis.

Multivariate comparisons of the measured FA values at the 10 structures between 

the groups (FGFR group, TWIST group, complex craniosynostosis group and healthy 

control subjects) were performed by using repeated measurements analysis of variance 

(ANOVA) (SAS PROC MIXED, SAS Institute). Dunnett adjustment was applied to the 

pairwise comparison of patient groups with the control group to correct for multiple 

comparisons.
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ADCs at the various structures were compared between the entire patient group and 

control subjects by using the Mann-Whitney test because data showed skew distributions 

at some structures; no multiplicity correction was made. A two-sided P value of less than 

0.05 was considered indicative of a statistically significant difference.

To determine the intraobserver reliability of the ROI placement, one observer (I.V.K.) 

repeated the placement on a subset of 10 images at intervals of 2, 4 and 6 weeks. Single-

measure two-way mixed intra-class correlation coefficients (ICCs) were calculated to 

quantify the variability of data obtained (16).

Statistical analysis was done by an experienced statistician. (W.C.J.H. with 30 years of 

experience)

RESULTS

Subjects

Forty-five children with syndromic or complex craniosynostosis (mean age 9.5 years; 

range 6.0 – 13.3 years) and seven healthy control subjects (mean age 10.7 years; range 

7.5 – 14.8 years) met the inclusion criteria. The age and sex distributions for our patient 

groups and control subjects are displayed in Table 1.

Table 1: Age and Sex distribution.

Diagnosis Total Male 
(n)

Female 
(n)

Mean Age 
(yrs)

FGFR 26 11 15 9.8

Apert 4 1 3 10.3

Crouzon/Pfeiffer 14 7 7 10.1

Muenke 8 3 5 8.9

Twist 11 8 3 9.3

Complex 8 4 4 8.8

Total Patients 45 23 22 9.5

Controls 7 4 3 10.7

Intra-observer Reliability of Region-of-Interest Placement

Reproducibility of ROI placement in 10 subjects by one observer was moderate to very 

strong, with ICCs of 0.30 - 0.94. However, the wide range of ICCs in these regions is 

disconcerting. The ICC was highest in the corticospinal tract (left: 0.94; right: 0.89) and 

corpus callosum (genu: 0.87; splenium: 0.92). An exception was the occipital white matter, 

which displayed a very weak ICC (left: 0.06; right: 0.38). The ICC for the MWM (mean of 

left and right frontal and occipital white matter) was moderate (0.66).
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Integrity of Brain Parenchyma in syndromic craniosynostosis patients

To examine the microstructural integrity of the brain, we used the eigenvalues to calculate 

the FA values and ADCs.

Fractional Anisotropy

Table 2 shows mean FA values according to syndrome and genetic background. Within 

the FGFR group, there were no significant differences (overall P=0.426 ANOVA) among 

patients with Apert, Crouzon-Pfeiffer, and Muenke syndromes. Therefore, further 

analyses were done to compare the three patient groups with the control group.

Figure 2 shows mean FA values for the various structures in the three patient groups and 

the control group. ANOVA showed significant differences regarding FA values among 

the FGFR, TWIST, complex craniosynostosis, and control groups (overall P<0.001). Mean 

FA values (± standard error of the mean) across the ten structures were 0.46, (±0.01), 

0.47(±0.01), 0.47(±0.01) and 0.51(±0.01) for the FGFR, TWIST, Complex craniosynostosis 

and control groups, respectively. ANOVA further showed that the differences between 

these four groups did not significantly depend on the measured structure (interaction 

group X structure: p=0.241), which indicates that the profiles of means for the groups 

as shown in Figure 2 do not significantly deviate from parallelism. Further pair-wise 

comparisons of the separate patient groups with the control group showed significant 

differences for FGFR group (adjusted P <0.001) and the complex craniosynostosis group 

(adjusted P < 0.013). The difference between the TWIST and control group approached 

statistical significance (adjusted P=0.051). There were no significant differences between 

the FGFR, TWIST and Complex craniosynostosis groups (overall P=0.162). The combined 

mean FA values for all patient groups were lower than those in the control group 

(difference -0.046; 95% confidence interval: -0.07 to -0.02; p<0.001). We obtained the 

same results when the age of the subjects at MR imaging was taken into account in the 

ANOVA models as a covariate.

Eigenvalues and ADCs.

Comparison of ADCs in the various structures between the entire patient group and the 

control group is shown in Table 3. For all structures, the median values were larger in the 

patient group than in the control group.
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Figure 2: Mean fractional anisotrophy (FA) values according to patient group FGFR (, n=26), TWIST (□, 
n=11), Complex (◊, n=8), Controls (●, n=7)

Table 3: Median with range of apparent diffusion coefficient (ADC in mm2/second) values of patients and 
control subjects.

Structure Patients Controls P

PCT 7.9 (6.9-9.2) 7.2 (6.5-7.6) < 0.001

CST 8.0 (6.7-10.4) 7.2 (5.8-7.8) < 0.001

MCP 7.8 (6.7-10.0) 6.8 (5.6-7.4) < 0.001

UNC 8.9 (7.3-9.9) 7.8 (7.2-9.0) < 0.001

AC 12.3 (7.4-25.6) 10.2 (8.6-12.7) 0.019

FX 15.4 (11.4-27.4) 11.9 (10.9-15.4) 0.017

GCC 9.9 (8.4-14.7) 8.9 (7.8-9.1) < 0.001

SCC 8.5 (7.0-14.0) 7.6 (6.5-8.6) 0.015

CG 7.8 (6.8-8.8) 6.9 (6.4-7.2) < 0.001

MWM 8.1 (7.7-8.8) 7.3 (6.9-7.6) < 0.001
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DISCUSSION

The aim of our study was to assess whether architectural alterations exist in the white 

matter of patients with syndromic and complex craniosynostosis. We generally found 

lower FA values in all white matter structures for patients compared to controls. Altough 

a decrease in diffusion anisotropy, meaning lower FA value, is not unique for our study 

population but commonly observed concurrent with central nervous system pathology 

(17-22). Song 2002 et al. (23) demonstrated that a detailed examination of directional 

diffusivities could shed light on underlying pathology. Also our FA value results suggest 

the presence of changes in white matter microstructural integrity in specific white matter 

regions in children diagnosed with syndromic or complex craniosynostosis. This seems 

to be in agreement with previously published data on white matter alterations, like thin 

corpus callosum, and septal anomalies, visible on conventional MRI scans (5-10).

There was a difference in FA values between the entire patient group and the control 

subjects, but there were no significant differences in FA values in specific regions 

of interest among the subgroups of individual syndromes and the complex form of 

craniosynostosis. The degree of white matter alterations seen in individual syndromes 

could not explain the wide range of neuropsychological outcome severities reported in 

the literature (24). Some studies suggest that difference in neurological outcome may be 

due to an increase in intracranial pressure, rather than a primary white matter disturbance 

(3, 4). For instance, patients diagnosed with Crouzon and Apert syndromes are known to 

be at higher risk for at least one episodes of increased intracranial pressure during their 

lives (especially during their first four years of life). This cannot be the only explanation, 

however, because our patients, with Muenke syndrome, which is knownto almost never 

cause an increase in intracranial pressure, (24) also had decreased anisotropy values in the 

white matter tracts, suggesting a primary cause. The effectt of hydrocephalus on white 

matter structures seems to be dependent of the location of that structure. Anisotropic 

changes in the corpus callosum could be a direct effect of the hydrocephalus (25), yet 

mostly this is reversible with surgical correction or ventricular shunts (26). The fact that 

we found anisotropic changes in structures throughout the whole brain of patients with 

craniosynostosis, who had already undergone surgery, is one more step towards the 

hypothesis of a primary disorder.

Our findings of lower FA values suggesting microstructural disturbances are supported 

by recent neurobiological evidence. The L1 cell adhesion molecule (L1CAM) gene plays 

a major role in the development of white matter. Its mutation causes similar defects of 

the corpus callosum, septum pellucidum, centrum semi-ovale and corticospinal tracts in 

humans and mice (27, 28). The growth hormone FGFR, defects of which cause syndromic 

craniosynostosis, is essential for L1CAM to operate (29, 30). Hence, in addition to its 

effect on the cranial sutures, FGFR seems to act on growth and maturation of white matter 

tracts, leading to primary alterations in the development of the white matter (10).

5
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The trend towards higher λ
2
 and λ

3
 eigen values and the higher ADC values in our patient 

group may also elucidate more about the microarchitecture of the white matter. Changes 

in these diffusion parameters may indicate diffusion changes radial (perpendicular) to 

white matter tracts. These findings may potentially be used to differentiate myelin loss 

from axonal injury (23). In agreement with prior animal and human studies (31-33), 

besides lower FA values, higher eigenvalues in combination with significantly increased 

ADC values in our craniosynostosis patients suggest increased radial diffusivity, indicating 

myelin deficiency. However, we do not have a radiologic-pathologic correlation in our 

study to confirm this, and detailed biophysical mechanisms underlying differential changes 

in directional diffusivities remain to be elucidated (23).

Our study has limitations, which include the age ranges and difference in mean ages of 

patients and control subjects. Results of diffusion-tensor imaging maturation studies 

suggest consistent, significant positive and negative correlations of, respectively, FA and 

ADC with age throughout the brain (34-41). However the age range for our study was 

6 to 14 years; at 6 years old, the brain has matured thoroughly enough to yield stable 

anisotropic indices, and DTI values seem to change only slightly afterwards (39). Also, 

adjusted for age the differences between the various subgroups remained the same.

Using relatively new post-processing tools such as tract-based spatial statistics (TBSS, 

www.fmrib.ox.ac.uk), assessment of anisotropic indices can be performed automatically. 

However, we encountered image registration problems when using TBSS because of the 

severe skull malformations of the patients included in the study. ROI and voxel-based 

analysis have previously shown good consonance (42), so ROI placement was determined 

to be the most suitable method for our study.

CONCLUSION

DTI was demonstrated to be a helpful supplement to conventional MRI for identifying 

white matter anomalies in children diagnosed with syndromic or complex craniosynostosis, 

adding to the evidence for a primary disorder of the white matter microenvironment. 

Further research is needed to assess the benefits of surgical interventions in syndromal 

craniosynostosis patients by focusing on pre-surgical (fetal and/or neonatal) imaging of 

the brain with diffusion-tensor imaging.

SUMMARY STATEMENT

DTI was demonstrated to be a helpful supplement to conventional MRI for identifying 

white matter anomalies in children diagnosed with syndromic or complex craniosynostosis, 

adding to the evidence for a primary disorder of the white matter microenvironment.
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ABS TR AC T
Background and purpose: In 7 to 15 year old operated children with syndromic 

craniosynostosis we have shown the presence of microstructural anomalies in brain 

white matter. To learn more about the cause of these anomalies, the aim of the study 

is to determine diffusivity values in white matter tracts in non-operated children with 

syndromic craniosynostosis, aged under 4 years compared to healthy controls.

Materials and methods: DTI datasets of 57 non-operated patients with syndromic 

craniosynostosis with a median [range] age of 0.4 [0.27-3.16] years, were compared with 7 

control subjects aged 1.39 [0.56 to 2.84] years. Major white matter tract pathways were 

reconstructed with ExploreDTI from datasets of 1.5 Tesla MRI system with 25 diffusion 

gradient orientations. Eigenvalues of these tract data were examined, with subsequent 

assessment of radial diffusivity values of the corpus callosum and cingulate bundle. Having 

syndromic craniosynostosis (versus control), sex, frontal occipital horn ratio and tract 

volume were treated as independent variables.

Results: Having syndromic craniosynostosis is associated with increased radial diffusivity 

in the genu and body of the corpus callosum and hippocampal and body of the cingulum 

bundle (p < 0.05), where tract volume and frontal occipital horn ratio are significantly 

associated interacting factors.

Conclusion: Before any surgery, young syndromic craniosynostosis patients aged under 4 

years have increased radial diffusivity values in the corpus callosum and cingulate bundle 

compared to aged matched controls. This difference suggest intrinsic and mechanic 

causes, with frontal occipital horn ratio being a significantly associated factor.
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INTRODUCTION

Patients with syndromic craniosynostosis (sCS) are at risk of developing intellectual 

disabilities and problems in behavioural and emotional function. Whether these 

derangements are caused by disturbances in brain development is unknown.1 Mutations 

in genes encoding the fibroblast growth factor receptors (FGFR) – which are expressed 

during early embryonic development– are known to be responsible for the pattern of 

abnormal skull development in sCS.2, 3 These gene mutations induce premature fusion 

of skull sutures and also affect the development of brain tissue and CSF circulation.4-6 

It is known that mutations in FGFR-1 or FGFR-2 are associated with decreased myelin 

thickness,7, 8 but is this finding a consequence of mechanical distortion of the brain due 

to abnormal shape, ventriculomegaly and/or cerebellar tonsillar herniation, or does this 

finding reflect an intrinsic cause?9-12 13, 14

Previously, we have reported abnormalities in brain white matter microstructure using 

MRI DTI in a group of older operated sCS patients aged 7 to 15 years. We identified 

significantly higher white matter mean diffusivity (MD), axial diffusivity (AD) and radial 

diffusivity (RD) in the cingulate bundle, corpus callosum, fornix and cortical spinal tract.15 

These findings suggested the presence of abnormal white matter microstructural tissue 

properties in sCS patients and now lead us to consider two key questions: 1) Are these 

abnormalities already present in young non-operated sCS patients? 2) If so, does it reflect 

exposure to some mechanically-related cause like worsening ventriculomegaly or does 

such an abnormality have an intrinsic cause?

In this report we have examined DTI-based white matter microarchitecture in white 

matter tracts in young non-operated children with sCS. Our hypothesis is that there 

are abnormalities in white matter microstructure already evident early in brain 

development.

MATERIAL AND METHODS

This study is an extension of our previously reported work about operated sCS patients 

versus controls.15 The Institution Research Ethics Board at Erasmus University Medical 

Center Rotterdam, The Netherlands, approved this study (MEC-2014-461), which is 

part of ongoing work at the Dutch Craniofacial Center involving protocolized care, brain 

imaging, clinical assessment and data summary and evaluation.

Subjects

MRIs from non-operated sCS and multisuture craniosynostosis patients (i.e., 2 or more 

prematurely closed skull sutures without a known genetic cause), aged under 4 years were 

included. Control subjects, within the same age range as our patients, were identified.

6
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MRI Acquisition

All brain MRI data were acquired with a 1.5 Tesla unit (General Electric Healthcare, 

Milwaukee, Wisconsin), including three-dimensional (3D) T1-weighted fast spoiled 

gradient-recalled sequence, high-resolution 3D T2- weighted spin echo sequence, and DTI 

sequences. DTI was obtained using a multi repetition single-shot echo-planar sequence 

with a section thickness of 3 mm without a gap. Images were obtained in 25 gradient 

directions with the following parameters: sensitivity, b: 1000s/mm2; TR: 15,000ms; TE: 

82.1ms; FOV: 240 x 240 mm2; and matrix: 128 x 128, resulting in a voxel size of 1.8 x 1.8 

x 3.0 mm. This protocol was identical in both sCS patients and controls, and kept equal 

throughout the entire study period.

DTI Data Collection

DTI processing was performed using ExploreDTI (http:// exploredti.com/). The processing 

consisted of correction of subject motion and eddy current distortions, and a weighted 

linear least-squares estimation of the diffusion tensor with the robust extraction of 

kurtosis indices with linear estimation (REKINDLE) approach.16, 17 White matter tracts 

for fiber tractography included projection fibers (corticospinal tract), commissural fibers 

(corpus callosum), tracts of the brain stem (medial cerebellar peduncle) and the tracts of 

the limbic system (fornix and cingulated bundle).

A ROI approach was used for white matter tract analysis, with the MRI Atlas of Human 
White Matter as a guideline.18 “OR/SEED” and “AND” operators were used when tracts 

were allowed to pass through, and “NOT” operators were used when tracts were not 

allowed to pass through. Occasionally, “NOT” operators were used to avoid aberrant or 

crossing fibers from other bundles. To secure measuring identical parts of the different 

white matter tracts, 2 AND operators at both ends of a bundle to extract always the 

same segment of the particular white matter tract were used. We measured the tracts 

as reported previously.15

DTI Metrics

The white matter metrics from DTI, voxel-by-voxel, are mathematically based on 3 

mutually perpendicular eigenvectors, whose magnitude is given by 3 corresponding 

eigenvalues sorted in order of decreasing magnitude as ʎ
1
, ʎ

2
 and ʎ

3
. An ellipsoid is created 

by the long axis of ʎ
1, 

and the small axes ʎ
2 

and ʎ
3, 

from where the measured length of 

the three axes are the eigen values. These eigenvalues are used to generate quantitative 

maps of fractional anisotropy (FA), the derivation of MD, RD and AD. FA represents the 

amount of diffusional asymmetry in a voxel, which is presented from 0 (infinite isotropy) 

to 1 (infinite anisotropy). AD stands for the diffusivity along the neural tract: ʎ
1
. The 

diffusivity of the minor axes, ʎ
2
 and ʎ

3, 
is called the perpendicular or radial diffusivity. The 

mean of these diffusivity ʎ
1
, ʎ

2
 and ʎ

3
 is known as MD. FA, MD, AD and RD are used as 

indirect markers of white matter microstructure of these young patients.19 However, the 

mathematical coupling in the FA, MD, RD and AD equations means that our statistical 
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approach will first need to assess for differences in the eigenvalues before analysing the 

impact of summary measures of diffusivity. The following equations were used:

unit of measure

FA scalar value ranging between 0-1

MD mm2/sec

RD mm2/sec

AD mm2/sec

Frontal Occipital Horn Ratio

Since ventriculomegaly is an abnormality in sCS patients the analyses we used the Frontal 
Occipital Horn Ratio (FOHR) to correct for ventricular size.20 The measurements were 

assessed in a standardized way by a single trained rater. Lateral ventricular was evaluated 

in the axial plane and the FOHR is calculated as the sum of the bifrontal horn bioccipital 

horn dimensions, divided by twice the biparietal dimension.

Reliability and Reproducibility

Inter-observer reliability of measurements was determined by comparing the results 

of two trained raters blinded to subject information. Both performed all structural 

measurements twice in 10 subjects, 5 patients and 5 control subjects. Interrater reliability 

was based on 10 repeated ratings and found to be high.

Partial volume effects due to brain deformity and abnormal ventricular size and shape 

potentially influenced the DTI fiber tractography data in patients with sCS. Therefore, 

our fiber tractography algorithms were adapted to track reliable and comparable fiber 

tracts in all subjects.

The FA threshold was set at 0.1, and the maximum angle threshold, at 45°. This DTI fiber 

tractography protocol has been used in craniosynostosis patients and controls.15 Of note, 
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even though a FA threshold of 0.2 is commonly used,21 a threshold of 0.1 made it possible 

to track all structures in the control group and almost all structures in the sCS group. 

However, the FA threshold of 0.1 meant that more aberrant tracts were generated and 

additional AND and NOT ROIs were required to exclude aberrant fibers. Additionally, 

by extracting particular segments from a white matter tract (by using 2 AND operators), 

we could measure identical white matter structures and make fair comparisons between 

patients with sCS and control subjects.

Statistical Analysis

Analyses were carried out using R Studio Version 1.1.442 – © 2009-2018 RStudio, 

Inc. Parametric statistics were used when the distribution of the data did not violate 

assumptions of normality. To minimize false positives resulting from multiple tests, 

multivariate analysis of variance (MANOVA) was used to determine whether patients 

and controls differed in patterns of ʎ
1
, ʎ

2
 and ʎ

3
 in the examined tracts. For ʎ

1
, ʎ

2
 and ʎ

3
 

a ƞ2 was calculated, in which Cohen’s guideline for “high” is ƞ2 > 0.14 22. The significant 

lambda values gave information from which tract FA, or which diffusivity value, could be 

affected in patients versus controls (see above, DTI Metrics).

Subsequent analyses used linear regression in 6 brain regions (corpus callosum [body and 

genu] and the left and right cingulate bundle [body and hippocampal]) with sCS/control, 

sex, FOHR and tract volume added to the model as independent variables. ß-Coefficients 

were calculated (stats package) for each regression and a significance level of 0.05 was 

considered for all tests.

RESULTS

Patient characteristics

Fifty-seven non-operated sCS patients with median [range] age 0.4 [0.27 to 3.16] years 

included cases with Apert (n =10), Crouzon-Pfeiffer (n =17), Muenke (n = 8), and Saethre-

Chotzen (n =11) syndromes, and complex craniosynostosis patients (n = 11). There were 

7 control subjects aged 1.39 [0.56 to 2.84] years (Table 1).

Eigen values ʎ
1
, ʎ

2
 and ʎ

3

Table 2 summarizes the ƞ2 of ʎ
1
, ʎ

2
, ʎ

3
 by white matter tract. Left and right hemispheres 

show regional asymmetries. The genu and body of the corpus callosum, and the 

hippocampal and body of the cingulum bundle show a ƞ2 >0.14 in ʎ
2
 and ʎ

3
. The left 

corticospinal tract shows a ƞ2 >0.14 for ʎ
1
.

The summary shape of the tensors of each voxel in a 3D ellipsoid is shown in Figure 1 with 

the mean ʎ
1
, ʎ

2
, ʎ

3
 of patients and controls for the corpus callosum genu, corpus callosum 

body and left cingulate bundle. We see the three major, medium and minor axis of the 
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diffusion displacement. All 3 ellipsoids show any degree of anisotropy, orientation in 3D 

space. The control group shows smaller ellipsoids in comparison with sCS patients . The 

corpus callosum shows a more anisotropic ellipsoid then the cingulate bundle, which has 

a more Gaussian appearance.

Table 1. Patient Characteristics

Apert Crouzon- Muenke Saethre- Complex Total 
Craniosynostosis

Controls

Pfeiffer Chotzen

no. of subjects 10 17 8 11 11 57 7

M/F sex 06:04 08:09 01:07 05:06 02:09 27:30:00 03:04

Mean age (SD)
0.27 

(0.10)
1.00 

(0.93)
0.37 

(0.09)
0.59 

(0.36)
0.40 

(0.22)
0.59 

(0.60)
1.51

(0.72)

Min age 0.049 0.24 0.26 0.027 0.047 0.027 0.56

Max age 0.41 3.16 0.51 1.28 0.92 3.16 2.84

Table 2. Overview of ƞ2 of MANOVAs ʎ1, ʎ2 and ʎ3 in patients vs controls

λ1 λ2 λ3

CST left 0.2 0.05 0.07

CST right 0.13 0.06 0.1

Corpus Callosum Genu 0.12 0.16 0.19

Corpus Callosum body 0.12 0.18 0.21

Corpus Callosum Splenium 0.04 0.09 0.12

MCP 0 0.04 0.03

Fornix Left 0.06 0.05 0.06

Fornix Right 0.12 0.1 0.09

Cingulum Hippocampal left 0.19 0.19 0.16

Cingulum Hippocampal right 0.11 0.15 0.1

Cingulum body left 0.08 0.31 0.17

Cingulum body right 0.04 0.27 0.21

*Cohens guideline: 0.01 = small, 0.06 = medium, > 0.14 = large
Abbreviations: CST – Cortical Spinal tract, MCP – Medular Cerebral Peduncle, λ - lambda

Radial diffusivity analyses

Since the genu and body of the corpus callosum, and the hippocampal and body of the 

cingulum bundle show a ƞ2 >0.14 in ʎ
2
 and ʎ

3
, subsequent analyses focused on RD (see 

Figure 1).

6
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Figure 1 Legend:
Figure 1a. Corpus Callosum Genu
Figure 1b. Corpus Callosum Body
Figure 1c. Cingulate Bundle Body Left
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Table 3 shows an increase of 22.80 x 10-5 mm2/sec in RD (95% CI 12.03 x 10-5 mm2/sec 

– 33.57 x 10-5 mm2/sec, p = .000) in the corpus callosum body and an increase of 19.34 

x 10-5 mm2/sec in RD (95% CI 8.17 x 10-5 mm2/sec – 30.51 x 10-5 mm2/sec, p = .001) in 

the corpus callosum genu in sCS patients compared to the control group. An 0.1 rise in 

FOHR gives a rise of 17.22 x 10-5 mm2/sec in RD for the corpus callosum body (95% CI 

10.74 x 10-5 – 23.69 x 10-5 mm2/sec, p = .000) and a rise of 17.91 x 10-5 mm2/sec for the 

corpus callosum genu (95% CI 12.23 x 10-5 – 23.58 x 10-5 mm2/sec, p = .000). No gender 

differences are demonstrated in both tracts of the corpus callosum.

As seen in Table 3, the sCS group shows an increase of 12.66 x 10-5 mm2/sec in RD (95% 

CI 6.03 x 10-5 mm2/sec -19.28 x 10-5 mm2/sec, p = .000) in the body of the cingulate bundle 

of the left hemisphere and an increase of 10.71 x 10-5 mm2/sec in RD (95% CI 5.19 x 10-5 

mm2/sec -16.24 x 10-5 mm2/sec, p = .000) in the body of the cingulate bundle of the right 

hemisphere, compared to the control group. An increase of FOHR is not significant related 

to a increase of RD for the body of the cingulate bundle for both hemispheres.

In the hippocampal part of the cingulate bundle there is an increase of 13.35 x 10-5 mm2/

sec in RD (95% CI 7.57 x 10-5 -19.13 x 10-5 mm2/sec, p = .000) for the left hemisphere 

and an increase of 10.73 x 10-5 mm2/sec in RD (95% CI 3.52 x 10-5 mm2/sec – 17.93 x 10-5 

mm2/sec, p = .004) in the right hemisphere, for sCS compared with controls. A leftward 

asymmetry of RD in the cingulate hippocampal tracts is highlighted in FOHR: per 0.1 rise 

in FOHR, a significant increase of 7.34 x 10-5 mm2/sec in RD (95% CI 3.93 x 10-5 mm2/

sec – 10.75 x 10-5 mm2/sec, p = .000) in the left hemisphere and an increase of 3.64 x 10-5 

mm2/sec in RD ( 95% CI 0.37 x 10-5 mm2/sec – 6.92 x 10-5 mm2/sec, p = .03) in the right 

hemisphere is seen. No gender differences were observed.

6
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Table 3. Linear regression on RD with independent variables sCS, gender, tractvolume and FOHR

Corpus Callosum body Estimate* SE* 2.5% CI 97.5% CI P-Value

Intercept 57.68 15.13 27.43 87.93 <.001

Syndromic Craniosynostosis 22.8 5.39 12.03 33.57 <.001

Gender(female) -0.85 3.92 -8.69 7 .83

Tractvolume in mm3 -0.01 0 -0.01 0 .002

FOHR per 0.10 17.22 3.24 10.74 23.69 <.001

Corpus Callosum Genu

Intercept 36.52 14.39 7.7 65.34 .01

Syndromic Craniosynostosis 19.34 5.58 8.17 30.51 .001

Gender(female) -3.28 3.5 -10.28 3.72 .35

Tractvolume in mm3 -0.01 0 -0.01 0 .003

FOHR per 0.10 17.91 2.83 12.23 23.58 <.001

Cingulate Bundle body left

Intercept 73.91 7.85 58.18 89.63 <.001

Gender(female) 0.51 2.39 -4.28 5.29 .83

Syndromic Craniosynostosis 12.66 3.31 6.03 19.28 <.001

Tractvolume in mm3 -0.01 0 -0.02 0 .02

FOHR per 0.10 1.88 1.92 -1.96 5.72 .33

Cingulum Bundle body right

Intercept 78.17 7.18 63.76 92.58 <.001

Gender(female) -0.41 2.08 -4.58 3.77 0.87

Syndromic Craniosynostosis 10.71 2.75 5.19 16.24 <.001

Tractvolume in mm3 -0.02 0 -0.03 -0.01 <.001

FOHR per 0.10 2.22 1.76 -1.32 5.75 .21

Cingulate Bundle Hippocampal left

Intercept 59.57 6.92 45.73 73.42 <.001

Gender(female) 0.85 2.17 -3.49 5.19 .70

Syndromic Craniosynostosis 13.35 2.89 7.57 19.13 <.001

Tractvolume in mm3 0 0 -0.01 0 .30

FOHR per 0.10 7.34 1.70 3.93 10.75 <.001

Cingulate Bundle Hippocampal right

Intercept 73.5 6.19 61.1 85.91 <.001

Gender(female) -0.69 2.48 -5.65 4.27 .78

Syndromic Craniosynostosis 10.73 3.6 3.52 17.93 .004

Tractvolume in mm3 0 0 -0.01 0.01 .42

FOHR per 0.10 3.64 1.64 0.37 6.92 .03

*all values are x 10^-5
Abbreviations: RD: Radial Diffusivity, sCS: syndromic Craniosynostosis, FOHR: Frontal Occipital Horn 
Ratio
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Type of syndrome

By linear regression analyses we observed correlations between an increase in RD and the 

type of syndrome for the 2 parts of the corpus callosum and the 4 parts of the cingulate 

bundle (supplemental Table 1). Identifying the association between having Apert, 

Crouzon, Muenke, Saethre-Chotzen or multisuture craniosynostosis and an increase in 

RD, Apert is the most affected syndrome for increase in RD, with the highest increase 

of 44.91 x 10-5 mm2/sec in RD in the corpus callosum body (CI 95%, 31.15 x 10-5 mm2/

sec – 58.67 x 10-5 mm2/sec), relative to the increase of 17.91 x 10-5 mm2/sec in complex 

patients and 19.17 x 10-5 mm2/sec in Crouzon patients.

Discussion

In this report of white matter microstructure using DTI in under 4 year olds with 

non-operated sCS we have focused on significant differences in ʎ
2
 and ʎ

3
 between 

craniosynostosis and controls in the major white matter tracts. We found that sCS is 

associated with an increase in RD in parts of the corpus callosum and cingulate bundle. 

Consistent with previous studies of white matter asymmetry,23 our results show 

lateralization in RD values. We failed to detect an effect of sex on RD.

During normal brain development and white matter maturation, FA increases and 

diffusivity (MD, AD and RD) decreases.24, 25 Although differences in DTI can demonstrate 

differences in microstructure, the physics of the measurement is nonspecific and could 

reflect a variety of mechanisms.23 As water movement is more restricted perpendicular to 

myelin membranes than it is parallel to these membranes, it is presumed that RD reflects 

myelin integrity. Furthermore, RD is determined by axon density and/or diameter of 

the white matter tract.26, 27 Higher RD values in sCS patients, as found in the current 

study, in the corpus callosum and cingulate bundle, could therefore indicate less defined 

tissue organization, axonal pathology, reduced myelination or myelin damage.26, 27 

This finding could be related to several mechanisms, including the biological effect of 

delayed maturation due to the genetic background of sCS, or the mechanical effect of 

ventriculomegaly.

Biological effect on increased RD

The corpus callosum is an early myelinated region of the brain, undergoing development in 

weeks 12 to 16 of pregnancy.28 The finding that sCS is associated with increased RD in the 

corpus callosum could reflect delayed white matter maturation, compared to controls. Our 

previous study of 7 to 15 years olds with sCS, compared to aged matched controls, also 

found increased RD values in the corpus callosum and cingulate bundle,15 which suggests 

an intrinsic rather than acquired abnormality.

The fibroblast growth factor receptors have a role in myelination of the corpus callosum 

and cingulate gyrus. Wilke et al showed that in craniofacial development, FGFR2 and 3 

are involved in telencephalon development from which the cingulate bundle and corpus 

6
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callosum arises.29 FGFR-2 promotes oligodendrocyte generation in the developing and 

adult brain.7, 8 (Oligodendrocytes are the myelin-forming cells that throughout life have 

their precursors arising from neural stem cells in the subventricular zone.) Taken together, 

the FGFR mutations could be an intrinsic factor resulting in increased RD values in sCS.

Mechanical effect on increased RD

We also used the current study to examine for any potential association between brain 

white matter microarchitecture changes and brain distortion 30, 31. We used a measure of 

ventriculomegaly and found that in non-operated sCS patients, compared with controls, 

there was a significant interaction between RD and FOHR in sCS. In this study 0.1 

increase in FOHR gives an increase of RD. Hence it remains unknown if this increase 

of RD is reversible, if this increase of RD has its effect on cognitive outcome and which 

corresponding FOHR cut-off point will improve the outcome.

Clinical relevance

To date there are no normal ranges of DTI measurements in children under the age of 4 

years in literature. DTI is dependent on many technical variables, such as the type of MRI 

scanner used and the amount of diffusion encoding directions, which makes it extremely 

difficult to compare absolute DTI values with other DTI studies. With reference to DTI, 

studies in older children, autism or developmental delay have shown increased MD in 

the corpus callosum.32, 33 Also increased diffusivity values within the cingulate bundle 

are associated with more severe internalizing and externalizing behaviour in children.34 

The findings in the current study are of value and relevance to future studies of cognitive 

development and diffusivity in sCS, particularly in the social and attention problems 

associated with Apert syndrome.1

Limitations

This study is not without limitations. Our diffusion protocol may have been overly sensitive. 

Our use of a 0.1 threshold made it possible to track all structures in the control group 

and almost all structures in the craniosynostosis group. However, the 0.1 FA threshold 

meant that more aberrant tracts were generated and additional AND and NOT ROIs were 

required to exclude aberrant fibers. Though, equal measurements were made between 

two groups. Also, the sample size was small and, therefore, we may have failed to identify 

associations when in fact they do exist, and vice versa. That said, the current report is the 

largest DTI study, to date, in non-operated craniosynostosis patients.
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CONCLUSION

Before any surgery, young sCS patients aged under 4 years have increased DTI RD 

values in the corpus callosum and cingulate bundle compared to age matched controls. 

This difference suggests both biologic causes and mechanical causes, in which there is an 

interaction between RD and FOHR is sCS.
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ABS TR AC T
Purpose: Hindbrain herniation (HH) is frequently found in syndromic craniosynostosis. 

It may cause impairment of the respiratory centres and manifest as sleep-disordered 

breathing. Our aim was to quantify sleep apnea caused by HH in children with syndromic 

craniosynostosis.

Methods: Seventy-one children with syndromic and complex craniosynostosis (aged 

0 – 18 years) underwent prospective magnetic resonance imaging and a sleep study. 

The position of the cerebellar tonsils and respiratory parameters were evaluated and 

analysed. None of the included patients had undergone previous foramen magnum 

decompression.

Results: HH was present in 35% of the patients and was more frequent in children with 

Crouzon syndrome (63%) than in other types of craniosynostosis (P = .018). There was 

a positive association between the position of the cerebellar tonsils and papilledema 

(p = .002). Sleep studies of children with craniosynostosis and HH were not different from 

those without HH. Obstructive sleep apnea syndrome was not more prevalent in children 

with HH compared to those without HH (p = .12). A cluster analysis using indices of apnea 

revealed 3 new clusters between which age was significantly different (p = .025).

Conclusion: Sleep apnea in syndromic craniosynostosis is not caused by HH. Rather, our 

evidence suggests that sleep-disordered breathing in craniosynostosis may be caused by 

brain stem immaturity in young children or upper airway obstruction. Therefore, as long as 

the child remains asymptomatic, our preferred management of HH is to be conservative 

and provide regular neurosurgical follow-up.
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INTRODUCTION

Hindbrain herniation (HH) is a frequent finding in syndromic and complex 

craniosynostosis(1, 2) (Figure 1). It is found in up to 72% of cases with Crouzon 

syndrome(3). In contrast, HH is identified in only a minority (3.6%) of children undergoing 

MR imaging for other indications(4).

Several theories have been proposed to explain the mechanism by which HH in 

craniosynostosis develops. Some authors suggest that HH is related to the small size of 

the posterior fossa, especially after premature closure of the lambdoid sutures. Others 

suggest that potential causes include anomalies in the cerebellum and brain stem, venous 

hypertension, increased intracranial pressure (ICP) and hydrocephalus(1, 5).

If hindbrain compression involves the brain stem, cranial nerves and upper spinal cord, 

then impaired respiratory homeostasis may be evident(6). For example, abnormalities 

in the rate and depth of breathing, presence of central and obstructive apneas and low 

arterial hemoglobin-oxygen saturation have all been observed in cases of HH(7-10). In 

theory, these problems occur during sleep because of the release from voluntary adjusting 

of autonomic action. However, to date, the limited evidence of sleep-disordered breathing 

and hypoventilation in children with HH is based on case reports(5, 10, 11) and only one 

case series(12). The aim of this study is to evaluate whether children with syndromic 

craniosynostosis and HH suffer from more sleep apnea than patients with syndromic 

craniosynostosis without HH. If HH induces sleep apnea, it could possibly be used as a 

physiologic function that matches the abnormal anatomy and clinical significance of HH.

Figure 1: Chiari I Malformation in a 16-year old patient with Crouzon syndrome.
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MATERIALS AND METHODS

Study Subjects

This prospective study was undertaken at the Dutch Craniofacial Centre. We included 

patients with syndromic craniosynostosis; namely Apert, Crouzon, Pfeiffer, Muenke 

and Saethre Chotzen syndrome. The diagnoses in these children were based on genetic 

analysis. If none of the above conditions was identified, and at least 2 cranial sutures were 

involved, patients were considered to have complex craniosynostosis. It is our practice 

that patients undergo cranial vault surgery before the age of 12 months. We screen for 

increased ICP by using annual fundoscopy up to the age of 6 years. If papilledema is present 

or the clinical suspicion of increased ICP arises, we perform invasive ICP monitoring and 

secondary cranial vault remodelling. This makes persistent increased ICP uncommon.

The local research ethics committee (METC Erasmus MC MEC-2005-273) approved the 

study. In the period from 01/12/2009 to 01/03/2011, the parents of patients presenting 

at our outpatient department for routine clinical review were invited to participate in 

the study. One girl with Apert syndrome was excluded because of previous sub-occipital 

decompression which potentially influences the course and symptomatology of HH.

Study design

Magnetic Resonance Imaging (MRI)
All participants underwent cranial MRI on a General Electric (GE) 1.5 tesla scanner with 

Diffusion Tensor Imaging. Measurements on the images were made by hand by a pediatric 

neuroradiologist (ML) who was blinded to the results of the sleep study. HH was assessed 

on sagittal T1- and T2-weighted sequences for optimal assessment of the posterior fossa 

and cranio-cervical junction. We acknowledge the contradictive evidence on the definition 

of HH. A Chiari I malformation (CM) was defined as a descendence of the cerebellar tonsils 

more than 5 mm below the basion-occiput line. If the position of the tonsils was in the grey 

area of 0 up to 5 mm below the foramen magnum it was referred to as tonsillar herniation 
(TH) (6). Syringomyelia was defined as any spinal cord cavity containing cerebrospinal fluid 

(CSF). Neurologic examination was performed by the pediatric neurosurgeon (MLvV) if 

HH was present.

Sleep studies
Overnight sleep respiratory recordings were captured using the Embletta Portable 

Diagnostic System, and analysed with Somnologica for Embletta software 3.3 ENU 

(Medcare Flaga, Reykjavik, Iceland). Thoracic and abdominal movements were followed 

using circumferential impedance elastic trace belts (X act). Nasal airflow was measured 

with a flow transducer attached to a nasal cannula (Salter Labs, Arvin, USA). Pulse oximetry 

hemoglobin-oxygen saturation (SpO
2
) and heart rate (HR) were recorded using an infant 

or pediatric sensor (Nellcor, Pleasanton, USA). The overnight recordings were examined 
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independently of the MRI findings. The following summary statistics, abnormalities and 

sleep data were analysed by visual inspection.

First, we quantified the duration of total sleep time. Total sleep time was calculated starting 

from the moment of regular respiratory movements during the night up to the change into 

an irregular signal in the morning. A successful study had a minimum of 360 minutes of 

traces free from artefact(13). Second, we assessed the nasal flow signals, the abdominal 

and thoracic impedance signals, and SpO
2
 measurements for patterns indicative of various 

forms of abnormal breathing:

● Apneas were scored if ≥80% of flow was reduced. To account for age-related 

variability in respiratory rate, the minimum length of an event in seconds was 

equivalent to two breaths(13, 14). Apneas associated with ≥4% reduction in SpO
2
 

from baseline were all included regardless of length.

o Isolated central apnea was defined as a respiratory pause during which the 

nasal, abdominal and thoracic airflow ceased.

o Obstructive apnea was recognized on paradox respiratory trace excursions 

with absent or reduced nasal airflow.

o Mixed apnea was identified as an apnea with both central and obstructive 

components.

● Hypopnea was identified when flow was reduced ≥50% in the presence of thoracic 

and abdominal breathing movement. The minimum length in seconds was equivalent 

to 120/
(baseline breathing rate per minute)

(15)
. 
Hypopneas were only included if a subsequent 

reduction in SpO
2 

of ≥4% from baseline occurred.

The summary statistics from the night sleep study included the apnea-hypopnea index 

(AHI); where the total number of obstructive, central and mixed apneas and pathologic 

hypopneas, were indexed to the duration of sleep (i.e., episodes per hour of sleep). This 

statistic is broken down into a central apnea index (CAI) and a combined obstructive 

apnea and pathologic hypopnea index (oAHI). Central events were also analysed according 

to periodicity. Periodic breathing was identified when there were consecutive cycles 

of central irregularity with apneas of at least 2 breaths separated by no more than 20 

seconds of normal breathing(16). It was considered significant if it is present in at least 5% 

of the total sleep time(16). Obstructive sleep apnea syndrome (OSAS) was present when 

oAHI is greater than 1 per hour. A hemoglobin oxygenation-desaturation index (ODI) was 

calculated as the number of desaturations (≥4% from baseline) per hour of sleep time.

OSAS is treated if patient have complaints that interfere with growth or development. 

Treatments will be mentioned, although they do not influence the potential effects of HH 

on the sleep study outcome.

7
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Statistical analysis

Our data do not conform to a normal distribution and so non-parametric statistics were 

used. Numerical summaries are presented with median (range). Descriptive statistics (i.e. 

Pearson chi-square (χ2)) were used to analyse the distribution of HH for example in the 

diagnostic groups. Non-parametric tests for continuous variables were used: the Mann 

Whitney U test to compare the sleep study outcomes between two patients groups and 

the Kruskal-Wallis analysis of variance to compare sleep study outcomes between multiple 

patient groups..

The second part of this study includes a Ward’s cluster analysis based on the AHI and 

CAI. Three newly identified clusters will be related to the anatomic level of the cerebellar 

tonsils, diagnosis and age.

The level of significance was set at a P < .05 (2-tailed) in all tests.

RESULTS

Eighty-one patients were invited to participate in the study. The parents of ten children 

did not consent to study (Figure 2). Seventy-one patients were therefore included in 

the analyses. Forty-six patients had a normal position of the cerebellar tonsils, 15 (21%) 

had CM and 10 (14%) had TH (Table 1), i.e. 35% of patients with syndromic or complex 

craniosynostosis exhibited some form of HH.

Nineteen patients experienced a period during which papilledema was found. In 1 child it 

was diagnosed before the initial cranial vault remodelling was performed. In 17 patients it 

developed after previous cranial vault surgery and a secondary cranial vault remodelling 

was required. Papilledema spontaneously disappeared in 1 child after two abnormal 

fundoscopies. There was an association between the position of the cerebellar tonsils 

and presence of papilledema (Pearson χ2 12.5; 2df; p = .002).
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Figure 2: Inclusion chart. In 2 patients in whom no apneas were observed the saturation profile tech-
nically failed.

Table 1: Patient characteristics.

Total Tonsillar 
herniation

Chiari I 
malformation

Normal position 
of the tonsils

71 10 15 46

Diagnosis (N)
- Apert
- Crouzon/ Pfeiffer
- Muenke
- Saethre-Chotzen
- Complex

13
26
10
10
12

2
5
-
-
3

2
11
1
-
1

9
10
9
10
8

Male (N) : Female (N) 37 : 34 3 : 7 8 : 7 26 : 20

VP drain (N) 5 - 5 -

Age at MRI in yrs 9
(0 – 19)

9
(3 – 18)

9
(2 – 19)

9
(0 – 14)

Age at sleep study in yrs 8
(0 - 19)

9
(3 – 18)

9
(3 – 19)

8
(0 -14)

Skull remodelling
before MRI (N)

60 10 13 37

OSAS (N (%)) 16 (25%) 3 (33%) 2 (17%) 11 (26%)

OSAS treatment (N) 1 CPAP
10 A(T)E
9 facial 
advancement

0 CPAP
3 A(T)E
3 facial 
advancement

1 CPAP
5 A(T)E
4 facial 
advancement

0 CPAP
2 A(T)E
2 facial
Advancement

Data presented as median (range). Where: VP drain is ventriculoperitoneal drain; OSAS is obstructive sleep 
apnea syndrome (oAHI>1); CPAP is continuous positive airway pressure; A(T)E is adenoidal-(tonsillar)-
ectomy; and facial advancements include LeFort I, LeFort III, monobloc and median faciotomy.
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Hindbrain herniation

Sixty of 71 (85%) cases underwent cranial vault surgery before MRI. Eleven did not: 3 

because of late diagnosis of craniosynostosis; 2 because the syndrome was genetically 

confirmed without craniosynostosis or signs of increased ICP, 2 because they were first 

followed up elsewhere; and 4 were not yet operated on because they were too young 

at the time of study. Neurologic signs were absent in all but one patient with CM. This 

nineteen-year-old Apert girl presented with a slight asymmetric pharyngeal arch, some 

hypertonia in both legs, knee tendon reflex 2/2; biceps tendon reflex 0/-1; triceps tendon 

reflex 0/0 but no Babinski (although difficult to interpret in children with Apert because 

of deformity of the feet); her sleep study was normal.

HH was more prevalent in Crouzon than in the other diagnoses (χ2 18.51; 8df; p = .018). 

Three patients with CM had a syrinx: in 1 case it was at the cervical vertebral level C4, 

in another case it was from C1 down to C7, and in the third case it started at C3 and 

continued up to the cone. Five patients with CM had a ventriculoperitoneal (VP) drain 

for the treatment of hydrocephalus.

Sleep apnea in hindbrain herniation

Sixty-one out of 71 sleep studies were complete. In the other 10 cases (3 CM, 1 TH, 6 

without HH) only partial results could be used because of technical failure in the recording. 

The median sleep time was 9.5 hours (6 - 13.5) (Table 2).

There was no significant difference in the CAI (U = 196.5, p = .25) in children with Chiari 

I malformation and children without hindbrain herniation. The indices are plotted in 

Figure 3. Other sleep study parameters were comparable too (AHI U = 224.5, p .34; 

oAHI U = 236, p = .74; ODI U = 322, p = .89; mean SpO2 U = 266.5, p = .27) (Table 2 *). 

Similarly, there was no difference in the sleep study outcomes when comparing children 

with CM to children with TH (Table 2 **) nor when comparing the children with CM, TH 

and a normal cerebellar tonsils level.

Post-hoc analyses were performed in patients with Crouzon syndrome, who happened to 

have the highest prevalence of HH (63%). Children with Crouzon syndrome with HH did 

not exhibit different sleep study outcomes when compared with those without HH (AHI 

(U = 53.5, p .56), CAI (U = 50.5, p = .60), oAHI (U = 52.5, p = .70), ODI (U = 70, p = .62), 

mean SpO
2
 (U = 70, p = .62)).

The patient with the highest CAI in the group with HH (AHI 6.1; CAI 5.6; oAHI 0.5; ODI 

4.7; mean SpO
2
 91.7%) had multiple non-periodic central apneas. This patient (complex 

craniosynostosis, 11 years old) with TH did not reveal additional signs of cerebellar or 

brain stem pathology during neurologic examination and is followed up annually by our 

paediatric neurosurgeon.
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Table 2: Sleep study outcomes in patients with and without tonsillar herniation and Chiari I Malformation.

Diagnosis N AHI CAI oAHI ODI ≥4% Mean sat

Normal 
tonsillar 
position

46
2.0
(0.0-25.6)

1.2
(0.0-11.5)

0.4
(0.0-14.5)

0.3
(0.0-14.4)

97.9%
(92.2-99.1)

* ***
Ns Chiari I 15

1.6
(0.0-5.6)

0.9
(0.0-3.9)

0.2
(0.0-5.0)

0.2
(0.0-30.6)

97.8%
(91.3-99.1)

**

Tonsillar 
herniation

10
1.2
(0.0-6.1)

0.8
(0.0-5.6)

0.4
(0.0-3.1)

1.0
(0.0-11.9)

97.3%
(91.7-98.4)

Presented as median (range). Ns = not significantly different
ODI ≥4% = oxygen desaturation index ≥4%
AHI = apnea hypopnea index
CAI = central apnea index
oAHI = obstructive apnea hypopnea index
Sat = saturation

* CM vs Normal tonsillar position: AHI U = 224.5, p .34; CAI U = 196.5, p = .25; oAHI U = 236, p = .74; ODI 
U = 322, p = .89; mean SpO2 U = 266.5, p = .27
** CM vs TH: AHI U = 58, p >.99; CAI U = 49.5, p = .75; oAHI U = 53, p = .97; ODI U = 63, p = .53; mean 
SpO2 U = 67, p = .68
*** CM vs TH vs Normal tonsillar position: AHI χ2 1.11, 2df; p = .58; CAI χ2 1.74, 2df; p = .42; oAHI χ2 0.11, 
2df; p = .95; ODI χ2 1.64, 2df; p = .44; mean SpO2 χ2 1.66, 2df; p = .44

Periodic breathing was present in 2 patients. It was recorded in a newborn with complex 

craniosynostosis in 4% of the registered time (CAI 11.5) and in another newborn with 

Apert syndrome in 5% of the registered time (CAI 8.5), both without HH.

At the time of study, 17 patients (24%; 4 Apert patients, 9 Crouzon patients, 1 Muenke 

patient, 1 Saethre-Chotzen patient and 2 patients with complex craniosynostosis) had 

been treated for OSAS (Table 1). Nonetheless, 8/17 patients still had OSAS, and overall 

the incidence of obstructive sleep apnea was 27%. OSAS was not more common in 

patients with HH compared with patients without HH (χ2 7.23; 4df; p = .12). In one multi-

developmentally-impaired girl with Crouzon syndrome (ODI 30.6, Table 2), no treatment 

was started at the parents’ request.

Cluster analysis

Ward’s cluster analysis was carried out using the AHI and CAI outcomes. The three 

clusters that were found were composed of 64 cases (cluster 1), 5 cases (cluster 2) and 

the 2 outlying cases (cluster 3) (Figure 4). Neither of the 2 patients of cluster 3 had HH. 

In cluster 2, 1 patient had TH and 1 patient had CM. The median AHI was 1.5 (0.0 - 5.6) 

for cluster 1; 6.1 (3.8 – 7.6) for cluster 2 and 20.0 (14.4 – 15.6) for cluster 3. The median 

CAI was 1.0 (0.0 – 2.6) for cluster 1; 3.8 (3.2 – 5.6) for cluster 2 and 10.0 (8.5 – 11.5) for 

cluster 3. Syndromic diagnoses were equally distributed (χ2 6.44; 8df; p = .60). The median 

age was 8 years (0 – 19) for cluster 1; 5 years (0 – 10) for cluster 2 and 4 months (3 – 5) for 

cluster 3, which was significantly different (χ2 7.34; 2df; p = .025). Correlation of the CAI 

with age in the total cohort was significant (Spearman’s rho -0.34; p = .006) (Figure 3).
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Figure 3: Scatterplot of CAI outcomes for patients with Chiari I Malformation, tonsillar herniation and 
a normal position of the cerebral tonsils. 
Black horizontal line at CAI = 1 shows the threshold for normality. Correlation of the CAI with age in the 
total cohort was significant (Spearman’s rho -0.34; p = .006).

Figure 4: Clusters based on AHI and CAI within a cohort of craniosynostosis patients with and without 
hindbrain herniation.
Ward’s analysis revealed three new clusters of 64 (cluster 1), 5 (cluster 2) and 2 (cluster 3) patients. All 
respiratory parameters except for mean saturation, were significantly different among these clusters (AHI 
χ2 17.97; 2df; p < .001, CAI χ2 18.49; 2df; p < .001, oAHI χ2 8.13; 2df; p = .017, ODI χ2 8.17; 2df; p = .017, 
mean saturation χ2 0.52; 2df; p = .77).
Median Z score for the CAI was -0.3 for cluster 1, 1.2 for cluster 2 and 4.4 for cluster 3, meaning that 
only cluster 3 lies above the 99 percentile of this cohort.
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DISCUSSION

Chiari I malformation and tonsillar herniation is highly prevalent in children with syndromic 

and complex craniosynostosis. The overall prevalence is 35%, with a maximum of 63% 

in Crouzon and Pfeiffer patients. In our population, there were no differences in the 

sleep study parameters when comparing patients with syndromic craniosynostosis with 

and without hindbrain herniation. Since radiological criteria for diagnosing HH in MRI 

vary, as reported by Bejjani et al(17), it is important to emphasize that there were no 

differences in sleep apnea either if we excluded the cases with low grade TH (i.e. <5mm). 

Our observation is consistent with a case series by Gonsalez et al, that reported 13 

patients with syndromic craniosynostosis and HH without any central apneas(12).

Our results are of great clinical relevance. At present, some craniofacial teams consider 

a decompression of the foramen magnum to be indicated as soon as HH is diagnosed. 

Our results show that sleep apnea is not more prevalent in patients with syndromic 

craniosynostosis and HH, meaning that sleep disordered breathing occurs independently 

of HH. Even other neurological symptoms were only present in one of the children. 

Routine surgical decompression appears to be overtreatment. However, few case reports 

have indeed demonstrated that hindbrain herniation may eventually result in neurological 

symptoms (e.g. cerebellar pathology) or sleep apnea, which emphasizes the importance 

of thorough clinical follow up.

Some specialists consider that in a child with symptomatic Chiari 0 malformation, a 

crowded posterior fossa may result in impaired CSF flow and syringomyelia even without 

descendence of the tonsils(18). We computed three clusters by combining the AHI and 

CAI outcomes. In the two clusters in which the CAI was greater than 1, none of the 

patients had syringomyelia and only 2 had HH. The CAI was pathologically increased 

(>5) in the two very young patients in cluster 3, independent of HH. Given the significant 

decrease in CAI with increasing age we conclude that, in our population, age is the most 

important contributor to the CAI, as seen by others(14).

Systematic polysomnographic studies in pediatric neurosurgical patients without 

craniosynostosis show that CM leads to sleep fragmentation, a reduction in rapid eye 

movement sleep and a pathologic increase in both the CAI and oAHI. Typically, such 

patients have myelomeningocele, which is commonly associated with severe Chiari type 

II malformation. Twenty percent of a Canadian cohort of myelomeningocele patients 

suffered from moderate or severe sleep apnea (AHI >5), which predominantly consisted 

of central apneas in 71% and obstructive apneas in 29%.

Although HH most commonly leads to periodic breathing and central apneas(19), it 

may also be associated with obstructive apneas due to injury of the cranial nerves or 

syringomyelia. This might paralyse the vocal cords(20,21) or impair the afferent nerves 
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of the tongue(22). It is hard to differentiate between obstructive apneas due to HH and 

those caused by the diversity of upper airway restrictions related to the craniofacial 

abnormality. We found that obstructive apneas and pathologic hypopneas were not more 

prevalent in children with HH. Since there was no increase in central apneas either, it is 

unlikely that the observed obstructive apneas were caused by HH-induced cranial or 

peripheral nerve neuropathology.

The big disparity in sleep study outcomes, also in our cohort without HH, illustrates that 

sleep disordered breathing in craniosynostosis is widely variable and probably multi-

factorial. Most notorious is the obstructive sleep apnea in patients with Crouzon and 

Pfeiffer syndrome(23) who also have the highest prevalence of HH. Although 16 patients 

in our series had undergone airway-treatment, the overall incidence of OSAS still was 

27%. Long-lasting severe OSAS may increase ICP(24) and it is presumed that persistent 

increased ICP may result in HH(2). Our routine cranial vault remodelling in the first year 

of life, as well as secondary cranial vault expansion in case of increased ICP and OSAS-

treatment if necessary may decrease the eventual prevalence of (symptomatic) HH. 

Future research should focus at the sequence of occurrence of increased ICP and HH. 

In our opinion, the question remains as to whether the deformity of HH is a primary 

causal abnormality or secondary finding. If it gradually occurs after birth, it is possible that 

secondary progression of HH might allow a certain degree of compression of the brain 

stem, cranial nerves and upper spinal cord without influencing physiology. An altered 

shape of the foramen magnum could be a second explanation.

CONCLUSIONS

Hindbrain herniation does not cause sleep apnea in patients with syndromic 

craniosynostosis of whom the majority underwent cranial vault remodelling and OSAS-

treatment if necessary. Therefore, as long as the child remains asymptomatic, our 

preferred management of HH is to be conservative and provide regular neurosurgical 

follow-up. In keeping with other studies(12), we advocate the use of screening sleep 

studies to follow up on central irregularity and to diagnose obstructive sleep apnea.
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This thesis was primarily designed to study the pathophysiology of syndromic 

craniosynostosis. Patients with syndromic craniosynostosis suffer from skull and brain 

abnormalities. Intracranial hypertension is one of the main problems and the most 

important reason to operate. Nowadays the different causes of intracranial hypertension 

are still controversial.

This thesis provides an overview of craniosynostosis syndromes and describes the genetic 

background. The second autosomal dominant mutation in MSX2 is described with the 

related phenotype. A new microdeletion syndrome is reported which is associated with 

complex craniosynostosis. Detection of both copynumber variations and Next generation 

sequencing based variant analysis will contribute to more accurate diagnostic classification 

of future craniosynostosis patients.

Concerning intracranial hypertension associated factors, this thesis has shown a 

significantly smaller diameter of the jugular foramen in syndromic craniosynostosis patients. 

Jugular foraminal narrowing and an abnormal venous system can be seen in syndromic 

craniosynostosis patients and may predispose to elevated intracranial pressure.

At the end of this thesis we show diffusion tensor imaging (DTI) of white matter tracts in our 

patient group. DTI tractography is challenging to perform in patient with craniosynostosis 

syndromes because of their abnormal shape of the head and different ventricular size 

and shape. We found differences in the diffusivity parameters which may suggest 

abnormal microstructural tissue properties of the different white matter tracts.

In summary, the pathophysiology of syndromic craniosynostosis is complex and still poorly 

understood. This thesis brings us further in unravelling the complexity of intracranial 

hypertension.

INTERPRETATION OF RESULTS

MSX2 is the first mutation described as a cause of craniosynostosis in 1993 (1). Moving 

forward at least 57 genes are indentified in syndromic craniosynostosis nowadays (2). In 

clinical practice, patients with syndromic craniosynostosis will be tested for mutations 

in FGFR2, FGFR3 and TWIST1 which are the genes with the most frequently occurring 

mutations. This thesis describes a Boston type craniosynostosis in a Dutch family who has 

a rare mutation with a very variable expression. Jabs et al. and Warman et al. describe the 

first family with a newly recognized form of autosomal dominant craniosynostosis. The 

family has a highly variable phenotype. Controversially this is the first craniosynostosis 

gene described but never found afterwards. The family that we present is the second 

family with a mutation in the MSX2 gene and also shows variable clinical presentation. 

Still, we observe striking phenotypic similarities in these families. Frontal bossing and 
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turricephaly are shown in the most severely affected patients. Gross limb abnormalities 

were not in these families. We have seen brachydactyly in three out of seven patients and 

may be part of the variable MSX2 Boston type craniosynostosis.

The ancestral origin from these two families is different; the previous described family 

is from the United Kingdom, while our family is from Bosnian origin. Interestingly, the 

affected amino acid in MSX2 in the Bosnian family (P148L) is at exact the same position 

as in the Boston family (P148H) and likely causing a similar and specific gain of function 

through increased or altered binding of the MSX2 protein to DNA] (3). Given the rarity 

of this gain of function mutation it is likely that gain of function is only possible through 

a very limited mutations repertoire within the DNA-binding homeodomain. Most MSX2 

mutations described are loss of function mutations and the haploinsuffiency phenotype 

is different, causing parietal foramina [OMIM:168500] (4-8)

In our database of the Dutch craniofacial center we searched for patients with a 

complex form of craniosynostosis. These patients suspected to have a syndromic 

form of craniosynostosis, did not have any FGFR1, FGFR2, FGFR3, or TWIST mutations 

or deletions. SNP array analysis was used for these patients. We did find overlapping 

deletions in both patients in the 2p15p16.1 region. Deletions in the 2p15p16.1 region 

can lead to microcephaly, intellectual disability and additionally to craniosynostosis. This 

is an area which is recognized as a new microdeletion syndrome, and our patients had 

craniosynostosis as a clinical characteristic to this microdeletion syndrome.

MSX2 gene mutation occurs rarely and is clinically difficult to recognize in individual 

patients due to phenotypic variation.

Nowadays, genetic research is recommended to be done in craniosynostosis specialized 

centra to prevent unnecessary diagnostics. Genetic research is only done in patients with 

a confirmed diagnosis of craniosynostosis. In patients with an obvious phenotype targeted 

genetic testing should be performed to be more cost effective in healthcare. When there 

isn’t a recognizable phenotype Next Generation Sequencing of the craniosynostosis 

panel genes is recommended, including genetic testing of the parents (trio-analysis) on 

indication. (9-18)

In the following years we focused at intracranial hypertension. Intracranial hypertension 

can be caused by craniocerebral disproportion, obstructive sleep apnea, tonsillar herniation, 

hydrocephalus and cerebral venous anomalies. These venous anomalies have been 

described in earlier research, and a reduced diameter of the jugular foramen is mentioned as 

one of the possible causes.(19, 20) In our study we show that in syndromic craniosynostosis 

having a narrow jugular foramen is common, irrespective of the presence of papilledema. 

(21) So this aberrant anatomy of the jugular foramen can be either the initial defect and 

thus impairing outflow which stimulated the development of venous collaterals, or it can 
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be the result or an hypoplastic or absent jugular vein; in both cases the underlying genetic 

change appears to be the causative. Our study shows presence of venous collaterals already 

in very young patients, independent of the development of high intracranial pressure. 

This suggests that the venous collaterals are persistent vessels from early embryonic 

development that remain patent because cerebral outflow partially depends on it.

De Goederen et al. measured the total cerebral venous volume in craniosynostosis 

patients. (22) They showed that intracranial hypertension is related to an increased 

straight sinus volume, but an unchanged total cerebral venous volume. We assume there 

is a venous blood volume redistribution in these patients. This additional outflow through 

occipital collaterals appear to contribute to the regulation of the intracranial pressure. 

Intracranial hypertension will not happen as long as this additional outflow is sufficient.

Additional imaging of the brain was done using diffusion tensor imaging (DTI) to study 

architectural alterations in the white matter of patients with syndromic craniosynostosis. 

DTI measurements of white matter tracts reveal significant white matter integrity 

differences between children with craniosynostosis and healthy controls. This could imply 

the presence of a primary disorder of the white matter micro-architecture causing the 

developmental delays seen in these patients. We generally found lower FA values in all 

white matter structures for patients compared to controls, decreased diffusion anisotropy, 

meaning lower FA value, is not unique for our study population but commonly observed 

concurrent with CNS pathology. (23-27) Also our FA value results suggest the presence 

of changes in white matter microstructural integrity in specific white matter regions in 

children diagnosed with syndromic or complex craniosynostosis. This seems to be in 

agreement with previously published data on white matter alterations, like thin corpus 

callosum, and septal anomalies, visible on conventional MRI scans.(28-33)

The correlation between primary disorder of the white matter micro-architecture and 

developmental delays seen in these patients still needs to be proven.

In a DTI study in the unoperated craniosynostosis patients lower FA and higher diffusivity 

parameters were found in syndromic craniosynostosis patients compared to control 

subjects, indicating deficits in the white matter axonal organization and disturbances in the 

myelinization. Since this is true for young unoperated patients, it is likely that secondary 

factors, such as intracranial hypertension and surgery have less influence. It is more likely 

that these disturbances are caused by an intrinsic factor, such as altered brain perfusion 

or the genetic mutation itself. Future studies are already started to investigate the 

relation between local brain perfusion and white matter organization in the same region. 

Doerga et al published arterial spin labeling research which shows that young untreated 

craniosynostosis patients have a lower cerebral blood flow compared to control patients.

(34) When patients get older and have had their vault expansion cerebral blood flow 

normalizes, but what the main driver of this improvement is, remains unclear.
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Up to 63% of the syndromic craniosynostosis patients may suffer from hindbrain 

herniation. We show that sleep apnea is not more prevalent in patients with syndromic 

craniosynostosis and hindbrain herniation, meaning that sleep disordered breathing 

occurs independently of hindbrain herniation. We show a significant decrease in central 

apnea index with increasing age. Age is the most important contributor in central apnea 

index. We can agree with others that a young age is the most important contributor to 

central sleep apnea in syndromic craniosynostosis patients. (35)

Long lasting severe OSAS may increase intracranial pressure and it is presumed that 

persistent increased intracranial pressure may result in hindbrain herniation. We advocate 

screening with sleep studies to follow up on central irregularity and to diagnose obstructive 

sleep apnea. In syndromic craniosynostosis patients who develop central apnea, a cervical 

MRI and neurological physical follow up should evaluate tonsillar herniation or a syrinx. (36, 

37). Doerga presents that neurological symptoms provides no diagnostic certainty in ruling in 

or ruling out normal cerebellar tonsillar position. This is confirming the theory that the often 

encountered neurological symptoms occur independent of tonsillar herniation or syrinx and 

appear to reflect abnormalities of the central nervous system in syndromic craniosynostosis. 

A neurological follow up is recommended and should last until adulthood, as a deterioration of 

neurological symptoms can be a warning sign of progression of tonsillar herniation of syrinx.

FUTURE PERSPECTIVES

There are still many syndromic craniosynostosis patients without a confirmed genetic 

diagnose. Whole Exome Sequencing of the patients and the parents could display 

more genetic mutations in these patients. This genetic mutations could give us more 

insight in the details of the syndrome and help us to understand the consequences of 

having syndromic craniosynostosis and guide screening and treatment. Because of the 

small patient numbers available, craniosynostosis teams worldwide should invest in a 

multicentre prospective study to unravel genetics.

Further research should focus on dynamic studies of regional cerebral blood flow and 

venous flow in order to explore venous blood volume distribution. Transcranial Doppler 

sonography in pre and post operative craniosynostosis patients should learn us more 

of venous hypertension. Tasker opens a possibility for rational, point of care treatment 

decisions in pediatric patients with suspected raised ICP undergoing intensive care (38). 

The first non-invasive intracranial pressure estimation is done by an algorithm, based on 

arterial blood pressure and bedside trans cranial doppler and cerebral blood flow velocity 

waveform measurements.

We reported the largest DTI study in craniosynostosis patients. A new large multicentre 

study in craniosynostosis patients could verify the impact of genetic disorder in the brain 
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of these patients. Auto generated analysis could make it more time efficient and more 

reproducible for other study groups. Ultimately, in new innovative research, we need 

the neuropsychological data of all children to reliably associate it with the DTI results and 

establish a predictive value of neuropsychological development.
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Chapter 9

SUMMARY

Craniosynostosis most commonly occurs sporadically as an isolated defect and commonly 

involves one suture. Syndromic craniosynostosis typically involves multiple sutures 

synostosis as part of a larger constellation of associated anomalies. This thesis focuses 

on several aspects of craniosynostosis syndromes. This chapter will summarize the most 

important findings and the clinical implications following from this thesis.

In chapter 2 a family with a craniosynostosis and limited extra cranial features is described. 

With linkage analysis we found an autosomal dominant underlying genetic mutation. We 

found a missense mutation in all affected family members in MSX2. This is the second 

family were a second mutation in MSX2 is found.

In chapter 3 we further explore genetics and we performed a screening project by using 

a 250K SNP arrays. Of all complex craniosynostosis patients we indentified two patients 

with craniosynostosis and a microcephaly with a deletion in the 2p15p16.1 chromosomal 

region. FISH (fluorescence in situ hybridization) and qPCR were used to further analyze 

the deletions.

In chapter 4 we focused at elevated intracranial hypertension. Elevated ICP is an actual 

and still unknown problem in syndromic craniosynostosis patients. Potential causes 

which are mentioned are cranio-cerebral disproportion, obstructive sleep apnea, tonsillar 

herniation of the cerebellum and venous hypertension. We focused at the relation 

between the diameter of the jugular foramen and the presence of papilledema. We 

showed a smaller diameter of the jugular foramen in syndromic craniosynostosis patients 

and also abnormal venous collaterals were most often observed in patients with Apert, 

Crouzon-Pfeiffer and Saethre Chotzen syndrome. These findings confirm an abnormal 

venous system which may predispose to an elevated ICP.

Not only genetics and elevated intracranial pressure may contribute to the known 

developmental and psychological problems in craniosynostosis patients, but also intrinsic 

brain abnormalities may contribute. Therefore, we also investigated whether architectural 

alterations exist in the white matter of the brain.

In chapter 5 we performed the first step and set up the first prospective diffusion tensor 

imaging study. Diffusion tensor imaging measurements of white matter tracts reveal 

significant white matter integrity differences between children with craniosynostosis and 

healthy control subjects. Subsequently the next step is explained in chapter 6 where we 

performed a prospective MRI study in young craniosynostosis patients. This study shows 

that craniosynostosis patients who have had cranial vault surgery, have similar abnormal 

microstructural tissue properties compared to unoperated patients. Additionally, these 

patients have an abnormal white matter fiber organization. Because there is no effect 
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of surgery and impact of intracranial hypertension is minimized in these young patients, 

our results strongly suggest an intrinsic factor, most likely as the genetic mutation itself 

as its cause.

Chapter 7 a magnetic resonance imaging and sleep study is performed. In this prospective 

study syndromic craniosynostosis patients obtained a MRI which showed the position 

of the cerebellar tonsils. The respiratory parameters were evaluated with a sleep study. 

We could not confirm that sleep apnoea in syndromic craniosynostosis is caused by 

hindbrain herniation. Rather, our evidence suggest that sleep disordered breathing in 

craniosynostosis may be caused by brain stem immaturity in young children. Our advice 

according to hindbrain herniation is to be conservative and provide regular neurosurgical 

follow-up as long as the child remains asymptomatic.

In conclusion this thesis has travelled along the different parts of syndromic cranio-

synostosis. This thesis dissolves a small piece of the overall craniosynostosis puzzle. 

Further research is necessary to optimize treatment and to predict the clinical outcome 

of all individual craniosynostosis patients.

9
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SAMENVATTING

Syndromale craniosynostose treedt zelden op als een geïsoleerd probleem. Bij deze 

kinderen zijn meestal meerdere schedelnaden te vroeg gesloten en hebben vaak ook nog 

andere bijbehorende problemen. Dit proefschrift richt zich op verschillende aspecten van 

syndromale craniosynostose. De Nederlandse samenvatting geeft een overzicht van de 

belangrijkste bevindingen en de klinische implicaties van dit proefschrift.

Hoofdstuk 2 beschrijft een familie met craniosynostose en enkele extra craniale 

afwijkingen. Met linkage analyse is er een autosomaal dominante onderliggende 

genetische mutatie gevonden. Een missense mutatie in het MSX2 gen is in alle aangedane 

familieleden gevonden. Dit is de tweede familie ter wereld waar een mutatie in het MSX2 
gen is gevonden.

In hoofdstuk 3 wordt er verder ingegaan op de genetica en is er een screenings project 

gedaan met behulp van een 250KSNP array. Van alle complexe craniosynostosis patiënten 

hebben we twee patiënten met een craniosynostose en een microcephalie beschreven 

waar we een deletie in het 2p15p16.1 hebben gevonden. FISH (fluorescence in situ 

hybidization) en qPCR is gebruikt om de deletie verder te analyseren.

Hoofdstuk 4 is gericht op verhoogde intracraniele hersendruk. Verhoogde intracraniele 

druk is een actueel en onopgelost probleem in kinderen met een syndromale 

craniosynostose. Mogelijke oorzaken zijn cranio-cerebrale-disproportie, obstructief 

slaap apneu, tonsillaire herniatie van het cerebellum en veneuze hypertensie. We hebben 

ons met name gericht op de relatie tussen de diameter van het foramen jugulare en de 

aanwezigheid van papiloedeem. Een kleinere diameter van het foramen jugulare in 

syndromale craniosynostose patiënten en abnormale veneuze collateralen worden het 

vaakst gezien in patiënten met het syndroom van Apert, Crouzon-Pfeiffer en Saethre –

Chotzen. Dit onderzoek bevestigd dat een abnormale veneuze afvoer, invloed kan hebben 

op een verhoogde intracraniele druk.

Niet alleen genetica en verhoogde intracraniele druk draagt bij aan de ontwikkeling 

en psychologische problemen in craniosynostose patiënten, maar ook de intrinsieke 

hersenafwijkingen dragen hieraan bij. Dit hebben we verder onderzocht om te kijken 

of er afwijkingen te vinden zijn in de witte stof in de hersenen van craniosynostose 

patiënten.

Hoofdstuk 5 toont de eerste prospectieve DTI (diffusion tensor imaging) studie. DTI 

parameters van de witte stof meten hoe makkelijk watermoleculen kunnen bewegen in en 

tussen de wittestof banen. Met deze parameters zien we verschillen tussen kinderen met 

craniosynostose en gezonde controles. De volgende stap wordt uitgelegd in hoofdstuk 6 
waar we een prospectieve MRI Studie hebben gedaan in jonge craniosynostose patiënten. 
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Deze studie laat zien dat geopereerde craniosynostose patiënten dezelfde afwijkingen 

hebben als ongeopereerde craniosynostose patiënten, een abnormaal witte stof 

organisatie. Aangezien er dus geen effect is van de schedeloperatie en de invloed van 

intracraniële hypertensie heel beperkt is op jonge leeftijd wijzen onze resultaten op een 

intrinsieke factor. De meest waarschijnlijke intrinsieke factor is de genetische mutatie 

zelve.

Hoofdstuk 7 is een MRI studie gecombineerd met een slaap studie. In deze prospectieve 

studie hebben syndromale craniosynostose patiënten een MRI ondergaan en hiermee is 

de positie van de cerebellaire tonsillen bepaald. Tevens is er een slaap studie gedaan waar 

respiratoire parameters zijn gemeten. In deze studie konden we niet aantonen dat slaap 

apneu in syndromale craniosynostose veroorzaakt wordt door cerebellaire herniatie. Onze 

studie wijst in de richting dat slaap apneu veroorzaakt wordt door hersenstam immaturiteit. 

Wij adviseren bij een cerebellaire herniatie zonder symptomen een conservatief beleid te 

voeren en de patiënt geregeld te monitoren door een neurochirurg.

Dit proefschrift neemt je mee langs te verschillende onderdelen van syndromale 

craniosynostose. Het proefschrift lost een klein stukje van de puzzel op. Er is meer 

onderzoek nodig om de behandeling voor syndromale craniosynostose patiënten te 

optimaliseren en de klinische uitkomst beter te kunnen voorspellen.

9
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PHD PORTFOLIO

Name PhD student: J.M.G Florisson
Erasmus MC Departments: Plastic and Reconstructive Surgery
Promotor: Prof Dr. I.M.J. Mathijssen

Co-promotor: Dr. M.H. Lequin

PhD training Year Workload 
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Oral presentations Year Workload 
(hours)
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Hersenafwijkingen bij kinderen met een syndromale
Craniosynostose.
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development.
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craniosynostosis: A DTI Study.
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